Home
Class 12
MATHS
if (tanalpha-i(sin ""(alpha)/(2)+cos ""(...

if `(tanalpha-i(sin ""(alpha)/(2)+cos ""(alpha)/(2)))/(1+2 i sin ""(alpha)/(2))` is purely imaginary then `alpha` is given by -

A

`npi+(pi)/(4)`

B

`npi-(pi)/(4)`

C

`(2n+1)pi`

D

`2npi+(pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the values of \( \alpha \) for which the expression \[ \frac{\tan \alpha - i\left(\frac{\sin \alpha}{2} + \frac{\cos \alpha}{2}\right)}{1 + 2i\frac{\sin \alpha}{2}} \] is purely imaginary. This means that the real part of this expression must be equal to zero. ### Step-by-Step Solution: 1. **Identify the Expression**: We start with the expression: \[ z = \frac{\tan \alpha - i\left(\frac{\sin \alpha}{2} + \frac{\cos \alpha}{2}\right)}{1 + 2i\frac{\sin \alpha}{2}} \] 2. **Rationalize the Denominator**: To eliminate the imaginary part in the denominator, we multiply the numerator and denominator by the conjugate of the denominator: \[ z = \frac{\left(\tan \alpha - i\left(\frac{\sin \alpha}{2} + \frac{\cos \alpha}{2}\right)\right) \cdot \left(1 - 2i\frac{\sin \alpha}{2}\right)}{\left(1 + 2i\frac{\sin \alpha}{2}\right) \cdot \left(1 - 2i\frac{\sin \alpha}{2}\right)} \] 3. **Calculate the Denominator**: The denominator simplifies as follows: \[ (1 + 2i\frac{\sin \alpha}{2})(1 - 2i\frac{\sin \alpha}{2}) = 1^2 - (2i\frac{\sin \alpha}{2})^2 = 1 + 4\left(\frac{\sin^2 \alpha}{4}\right) = 1 + \sin^2 \alpha \] 4. **Calculate the Numerator**: Expanding the numerator: \[ \tan \alpha - i\left(\frac{\sin \alpha}{2} + \frac{\cos \alpha}{2}\right) - 2i \tan \alpha \frac{\sin \alpha}{2} + 2\left(\frac{\sin \alpha}{2} + \frac{\cos \alpha}{2}\right)\frac{\sin \alpha}{2} \] This results in: \[ \tan \alpha + \left(\frac{\sin^2 \alpha}{2} + \frac{\sin \alpha \cos \alpha}{2}\right) + i\left(-\frac{\sin \alpha}{2} + 2\tan \alpha \frac{\sin \alpha}{2}\right) \] 5. **Separate Real and Imaginary Parts**: The real part \( R \) and imaginary part \( I \) of \( z \) can be expressed as: \[ R = \frac{\tan \alpha + \frac{\sin^2 \alpha}{2} + \frac{\sin \alpha \cos \alpha}{2}}{1 + \sin^2 \alpha} \] \[ I = \frac{-\frac{\sin \alpha}{2} + 2\tan \alpha \frac{\sin \alpha}{2}}{1 + \sin^2 \alpha} \] 6. **Set the Real Part to Zero**: For \( z \) to be purely imaginary, we set the real part \( R \) to zero: \[ \tan \alpha + \frac{\sin^2 \alpha}{2} + \frac{\sin \alpha \cos \alpha}{2} = 0 \] 7. **Substitute \( \tan \alpha \)**: Recall that \( \tan \alpha = \frac{\sin \alpha}{\cos \alpha} \): \[ \frac{\sin \alpha}{\cos \alpha} + \frac{\sin^2 \alpha}{2} + \frac{\sin \alpha \cos \alpha}{2} = 0 \] 8. **Multiply Through by \( 2\cos \alpha \)**: This gives: \[ 2\sin \alpha + \sin^2 \alpha \cos \alpha + \sin \alpha \cos^2 \alpha = 0 \] 9. **Factor Out \( \sin \alpha \)**: \[ \sin \alpha (2 + \sin \alpha \cos \alpha + \cos^2 \alpha) = 0 \] 10. **Solve for \( \alpha \)**: - From \( \sin \alpha = 0 \), we have \( \alpha = n\pi \). - From \( 2 + \sin \alpha \cos \alpha + \cos^2 \alpha = 0 \), we can solve for other values of \( \alpha \). ### Final Values of \( \alpha \): The values of \( \alpha \) that satisfy the original condition are: \[ \alpha = n\pi + \frac{\pi}{4} \quad \text{or} \quad \alpha = 2n\pi \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 1|90 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

The value of expression (tan alpha+sin alpha)/(2"cos"^(2)(alpha)/(2)) for alpha=(pi)/(4) is :

Show that 4 sin alpha.sin (alpha + pi/3) sin (alpha + 2pi/3) = sin 3alpha

The value of (sin(pi-alpha))/(sin alpha-cos alpha tan.(alpha)/(2))-cos alpha is

If 0 < alpha < pi/6 and sin alpha + cos alpha =sqrt(7 )/2, then tan alpha/2 is equal to

If tan theta=(sin alpha- cos alpha)/(sin alpha+cos alpha) , then:

If the eccentric angles of the extremities of a focal chord of an ellipse x^2/a^2 + y^2/b^2 = 1 are alpha and beta , then (A) e = (cos alpha + cos beta)/(cos (alpha + beta)) (B) e= (sin alpha + sin beta)/(sin(alpha + beta)) (C) cos((alpha-beta)/(2)) = e cos ((alpha + beta)/(2)) (D) tan alpha/2.tan beta/2 = (e-1)/(e+1)

Show that (sin (alpha + beta))/( sin (alpha + beta)) = 2, given that tan alpha = 2 tan beta.

(cos ^(3) alpha - cos 3 alpha )/( cos alpha ) + (sin ^(3)alpha + sin 3 alpha )/( sin alpha ) = 3.

If (2sinalpha)/({1+cos alpha+sin alpha})=y, then ({1-cos alpha+sin alpha})/(1+sin alpha)=

If alpha in [-2pi, 2pi] and cos.(alpha)/(2)+sin.(alpha)/(2)=sqrt(2)(cos 36^(@)-sin18^(@)) , then a value of alpha

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 2
  1. If for complex numbers z1 and z2 and |1-bar(z1)z2|^2-|z1-z2|^2=k(1-|z1...

    Text Solution

    |

  2. If |a(i)|lt1lamda(i)ge0 for i=1,2,3,.......nandlamda(1)+lamda(2)+........

    Text Solution

    |

  3. if (tanalpha-i(sin ""(alpha)/(2)+cos ""(alpha)/(2)))/(1+2 i sin ""(alp...

    Text Solution

    |

  4. If sqrt(1-c^(2))=nc-1andz=e^(itheta)," then "(c)/(2n)(1+nz)(1+(n)/(z))...

    Text Solution

    |

  5. If z=x+iy,x,y real , then |x|+|y|lek|z| where k is equal to :

    Text Solution

    |

  6. If arg(z)=-pi/4 then the value of arg((z^5+(bar(z))^5)/(1+z(bar(z))))^...

    Text Solution

    |

  7. If p/a + q/b + r/c=1 and a/p + b/q + c/r=0, then the value of p^(2)/a^...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA+sinB+sinC=0andA+B+C=180^(@) then the value of...

    Text Solution

    |

  9. Let |(barZ(1) - 2barz(2))//(2-z(1)barz(2))|= 1 and |z(2)| ne 1, where...

    Text Solution

    |

  10. Let z be a complex number having the argument theta ,0 < theta < pi/2,...

    Text Solution

    |

  11. If |z+2-i|=5 and maxium value of |3z +9-7i| is M, then the value of M ...

    Text Solution

    |

  12. If a, b are complex numbers and one of the roots of the equation x^(2)...

    Text Solution

    |

  13. Solve for z : z^2-(3-2i)z=(5i-5)dot

    Text Solution

    |

  14. Find number of values of complex numbers omega satisfying the system o...

    Text Solution

    |

  15. For |z-1|=1, show that tan{[a r g(z-1)]//2}-(2i//z)=-idot

    Text Solution

    |

  16. If nge3and1,alpha(1),alpha(2),.......,alpha(n-1) are nth roots of unit...

    Text Solution

    |

  17. Let |z|=2and w=(z+1)/(z-1),where z ,w , in C (where C is the set of c...

    Text Solution

    |

  18. If z=x+i y is a complex number with x ,y in Qa n d|z|=1, then show th...

    Text Solution

    |

  19. If z^3+(3+2i)z+(-1+i a)=0 has one real roots, then the value of a lies...

    Text Solution

    |

  20. Given z=f(x)+ig(x) where f,g:(0,1) to (0,1) are real valued functions....

    Text Solution

    |