Home
Class 12
MATHS
If z=x+iy,x,y real , then |x|+|y|lek|z| ...

If `z=x+iy,x,y` real , then `|x|+|y|lek|z|` where k is equal to :

A

1

B

`sqrt2`

C

`sqrt3`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that if \( z = x + iy \) where \( x \) and \( y \) are real numbers, then \( |x| + |y| \leq k|z| \) for some constant \( k \). We will find the value of \( k \). ### Step-by-Step Solution: 1. **Express the modulus of \( z \)**: \[ |z| = |x + iy| = \sqrt{x^2 + y^2} \] 2. **Use the triangle inequality**: The triangle inequality states that for any complex numbers \( a \) and \( b \): \[ |a + b| \leq |a| + |b| \] Here, we can apply it to \( x \) and \( iy \): \[ |z| = |x + iy| \leq |x| + |iy| = |x| + |y| \] 3. **Square both sides**: To analyze the relationship, we can square both sides of the inequality: \[ |z|^2 = x^2 + y^2 \] and \[ (|x| + |y|)^2 = |x|^2 + |y|^2 + 2|x||y| \] 4. **Using the Cauchy-Schwarz inequality**: According to the Cauchy-Schwarz inequality: \[ (|x| + |y|)^2 \leq 2(|x|^2 + |y|^2) \] Thus, we have: \[ |x|^2 + |y|^2 \geq 2|x||y| \] 5. **Combine the inequalities**: From the previous steps, we have: \[ |x| + |y| \leq \sqrt{2(x^2 + y^2)} = \sqrt{2}|z| \] 6. **Identify \( k \)**: From the inequality \( |x| + |y| \leq \sqrt{2}|z| \), we can see that \( k = \sqrt{2} \). ### Final Result: Thus, the value of \( k \) is: \[ \boxed{\sqrt{2}} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 1|90 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

If z=x+iy prove that |\x|+|\y|lesqrt(2)|\z|

If the system of equations, 2x + 3y-z = 0, x + ky -2z = 0 " and " 2x-y+z = 0 has a non-trivial solution (x, y, z), then (x)/(y) + (y)/(z) + (z)/(x) + k is equal to

Value of |x+y z z x y+z x y y z+x|,w h e r ex ,y ,z are nonzero real number, is equal to x y z b. 2x y z c. 3x y z d. 4x y z

Value of |[x+y, z,z ],[x, y+z, x],[y, y, z+x]|, where x ,y ,z are nonzero real number, is equal to a. x y z b. 2x y z c. 3x y z d. 4x y z

If the number of solutions of the equation x+y+z=20, where 1 le x lt y lt z and x, y, z in I is k, then (k)/(10) is equal to

If xyz=m and det p=|{:(x,y,z),(z,x,y),(y,z,x):}| , where p is an orthogonal matrix. If y=x=z, then z is equal to

If z = x + iy, x , y in R , then the louts Im (( z - 2 ) /(z + i)) = (1 ) /(2) represents : ( where i= sqrt ( - 1))

If z=x +iy is purely real number such that x lt 0 then arg (z) is

If |(x+y,y+z,z+x),(y+z, z+x,x+y),(z+x,x+y,y+z)| =k |(x,z,y),(y,x,z),(z,y,x)| , then k is equal to

If a, b, c, x, y, z are real and a^(2)+b^(2) + c^(2)=25, x^(2)+y^(2)+z^(2)=36 and ax+by+cz=30 , then (a+b+c)/(x+y+z) is equal to :

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 2
  1. if (tanalpha-i(sin ""(alpha)/(2)+cos ""(alpha)/(2)))/(1+2 i sin ""(alp...

    Text Solution

    |

  2. If sqrt(1-c^(2))=nc-1andz=e^(itheta)," then "(c)/(2n)(1+nz)(1+(n)/(z))...

    Text Solution

    |

  3. If z=x+iy,x,y real , then |x|+|y|lek|z| where k is equal to :

    Text Solution

    |

  4. If arg(z)=-pi/4 then the value of arg((z^5+(bar(z))^5)/(1+z(bar(z))))^...

    Text Solution

    |

  5. If p/a + q/b + r/c=1 and a/p + b/q + c/r=0, then the value of p^(2)/a^...

    Text Solution

    |

  6. If cosA+cosB+cosC=0,sinA+sinB+sinC=0andA+B+C=180^(@) then the value of...

    Text Solution

    |

  7. Let |(barZ(1) - 2barz(2))//(2-z(1)barz(2))|= 1 and |z(2)| ne 1, where...

    Text Solution

    |

  8. Let z be a complex number having the argument theta ,0 < theta < pi/2,...

    Text Solution

    |

  9. If |z+2-i|=5 and maxium value of |3z +9-7i| is M, then the value of M ...

    Text Solution

    |

  10. If a, b are complex numbers and one of the roots of the equation x^(2)...

    Text Solution

    |

  11. Solve for z : z^2-(3-2i)z=(5i-5)dot

    Text Solution

    |

  12. Find number of values of complex numbers omega satisfying the system o...

    Text Solution

    |

  13. For |z-1|=1, show that tan{[a r g(z-1)]//2}-(2i//z)=-idot

    Text Solution

    |

  14. If nge3and1,alpha(1),alpha(2),.......,alpha(n-1) are nth roots of unit...

    Text Solution

    |

  15. Let |z|=2and w=(z+1)/(z-1),where z ,w , in C (where C is the set of c...

    Text Solution

    |

  16. If z=x+i y is a complex number with x ,y in Qa n d|z|=1, then show th...

    Text Solution

    |

  17. If z^3+(3+2i)z+(-1+i a)=0 has one real roots, then the value of a lies...

    Text Solution

    |

  18. Given z=f(x)+ig(x) where f,g:(0,1) to (0,1) are real valued functions....

    Text Solution

    |

  19. Let z1a n dz2 be complex numbers such that z1!=z2 and |z1|=|z2|dot If ...

    Text Solution

    |

  20. If m and x are two real number s and i=sqrt(-1), prove that e^(2mico...

    Text Solution

    |