Home
Class 12
MATHS
If arg(z)=-pi/4 then the value of arg((z...

If `arg(z)=-pi/4` then the value of `arg((z^5+(bar(z))^5)/(1+z(bar(z))))^n` is

A

`pi` if n is odd

B

0, if n is even

C

`3pi//2`

D

`pi//4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \arg\left(\frac{z^5 + \bar{z}^5}{1 + z\bar{z}}\right)^n \) given that \( \arg(z) = -\frac{\pi}{4} \). ### Step-by-Step Solution: 1. **Understanding the Argument of z**: Given \( \arg(z) = -\frac{\pi}{4} \), we can express \( z \) in polar form: \[ z = r \left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right) = r \left(\frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}}\right) \] where \( r = |z| \). 2. **Finding \( \bar{z} \)**: The conjugate of \( z \) is: \[ \bar{z} = r \left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right) = r \left(\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}\right) \] 3. **Calculating \( z^5 \) and \( \bar{z}^5 \)**: Using De Moivre's theorem: \[ z^5 = r^5 \left(\cos\left(-\frac{5\pi}{4}\right) + i\sin\left(-\frac{5\pi}{4}\right)\right) \] \[ \bar{z}^5 = r^5 \left(\cos\left(\frac{5\pi}{4}\right) + i\sin\left(\frac{5\pi}{4}\right)\right) \] 4. **Adding \( z^5 \) and \( \bar{z}^5 \)**: Since \( \cos\left(-\frac{5\pi}{4}\right) = \cos\left(\frac{5\pi}{4}\right) \) and \( \sin\left(-\frac{5\pi}{4}\right) = -\sin\left(\frac{5\pi}{4}\right) \): \[ z^5 + \bar{z}^5 = r^5 \left(\cos\left(-\frac{5\pi}{4}\right) + i\sin\left(-\frac{5\pi}{4}\right)\right) + r^5 \left(\cos\left(\frac{5\pi}{4}\right) + i\sin\left(\frac{5\pi}{4}\right)\right) \] This simplifies to: \[ z^5 + \bar{z}^5 = 2r^5 \cos\left(\frac{5\pi}{4}\right) = -\sqrt{2}r^5 \] 5. **Calculating \( 1 + z\bar{z} \)**: We know: \[ z\bar{z} = |z|^2 = r^2 \] Therefore: \[ 1 + z\bar{z} = 1 + r^2 \] 6. **Finding the Argument**: Now we can substitute back into our expression: \[ \frac{z^5 + \bar{z}^5}{1 + z\bar{z}} = \frac{-\sqrt{2}r^5}{1 + r^2} \] The numerator is a negative real number, and the denominator is a positive real number (since \( r^2 \geq 0 \)). Thus, the entire fraction is a negative real number. 7. **Final Argument Calculation**: The argument of a negative real number is \( \pi \). Therefore: \[ \arg\left(\frac{z^5 + \bar{z}^5}{1 + z\bar{z}}\right) = \pi \] 8. **Raising to the Power n**: Finally, we raise this to the power \( n \): \[ \arg\left(\left(\frac{z^5 + \bar{z}^5}{1 + z\bar{z}}\right)^n\right) = n \cdot \pi \] ### Conclusion: The value of \( \arg\left(\frac{z^5 + \bar{z}^5}{1 + z\bar{z}}\right)^n \) is: \[ n \cdot \pi \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 1|90 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

If arg(z_(1))=(2pi)/3 and arg(z_(2))=pi/2 , then find the principal value of arg(z_(1)z_(2)) and also find the quardrant of z_(1)z_(2) .

If arg(z) lt 0, then find arg(-z) -arg(z) .

If 0 le "arg"(z) le pi/4 , then the least value of |z-i| , is

If z = (-4 +2 sqrt3i)/(5 +sqrt3i) , then the value of arg(z) is

Let z_(1),z_(2) be two distinct complex numbers with non-zero real and imaginary parts such that "arg"(z_(1)+z_(2))=pi//2 , then "arg"(z_(1)+bar(z)_(1))-"arg"(z_(2)+bar(z)_(2)) is equal to

If |z|=1 and z ne +-1 , then one of the possible value of arg(z)-arg(z+1)-arg(z-1) , is

Find the locus of z if arg ((z-1)/(z+1))= pi/4

If arg ((z-6-3i)/(z-3-6i))=pi/4 , then maximum value of |z| :

Complex numbers z_(1) and z_(2) lie on the rays arg(z1) =theta and arg(z1) =-theta such that |z_(1)|=|z_(2)| . Further, image of z_(1) in y-axis is z_(3) . Then, the value of arg (z_(1)z_(3)) is equal to

If z_(1)= 3 + 5i and z_(2)= 2- 3i , then verify that bar(((z_(1))/(z_(2))))= (bar(z)_(1))/(bar(z)_(2))

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 2
  1. If sqrt(1-c^(2))=nc-1andz=e^(itheta)," then "(c)/(2n)(1+nz)(1+(n)/(z))...

    Text Solution

    |

  2. If z=x+iy,x,y real , then |x|+|y|lek|z| where k is equal to :

    Text Solution

    |

  3. If arg(z)=-pi/4 then the value of arg((z^5+(bar(z))^5)/(1+z(bar(z))))^...

    Text Solution

    |

  4. If p/a + q/b + r/c=1 and a/p + b/q + c/r=0, then the value of p^(2)/a^...

    Text Solution

    |

  5. If cosA+cosB+cosC=0,sinA+sinB+sinC=0andA+B+C=180^(@) then the value of...

    Text Solution

    |

  6. Let |(barZ(1) - 2barz(2))//(2-z(1)barz(2))|= 1 and |z(2)| ne 1, where...

    Text Solution

    |

  7. Let z be a complex number having the argument theta ,0 < theta < pi/2,...

    Text Solution

    |

  8. If |z+2-i|=5 and maxium value of |3z +9-7i| is M, then the value of M ...

    Text Solution

    |

  9. If a, b are complex numbers and one of the roots of the equation x^(2)...

    Text Solution

    |

  10. Solve for z : z^2-(3-2i)z=(5i-5)dot

    Text Solution

    |

  11. Find number of values of complex numbers omega satisfying the system o...

    Text Solution

    |

  12. For |z-1|=1, show that tan{[a r g(z-1)]//2}-(2i//z)=-idot

    Text Solution

    |

  13. If nge3and1,alpha(1),alpha(2),.......,alpha(n-1) are nth roots of unit...

    Text Solution

    |

  14. Let |z|=2and w=(z+1)/(z-1),where z ,w , in C (where C is the set of c...

    Text Solution

    |

  15. If z=x+i y is a complex number with x ,y in Qa n d|z|=1, then show th...

    Text Solution

    |

  16. If z^3+(3+2i)z+(-1+i a)=0 has one real roots, then the value of a lies...

    Text Solution

    |

  17. Given z=f(x)+ig(x) where f,g:(0,1) to (0,1) are real valued functions....

    Text Solution

    |

  18. Let z1a n dz2 be complex numbers such that z1!=z2 and |z1|=|z2|dot If ...

    Text Solution

    |

  19. If m and x are two real number s and i=sqrt(-1), prove that e^(2mico...

    Text Solution

    |

  20. Find the range of real number alpha for which the equation z + al...

    Text Solution

    |