Home
Class 12
MATHS
If nge3and1,alpha(1),alpha(2),.......,al...

If `nge3and1,alpha_(1),alpha_(2),.......,alpha_(n-1)` are nth roots of unity then the sum `sum_(1leiltjlen-1)alpha_(i)alpha(j)=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum \( \sum_{1 \leq i \leq j \leq n-1} \alpha_i \alpha_j \), where \( \alpha_1, \alpha_2, \ldots, \alpha_{n-1} \) are the \( n \)-th roots of unity. ### Step-by-Step Solution: 1. **Understanding the \( n \)-th Roots of Unity**: The \( n \)-th roots of unity are given by the formula: \[ \alpha_k = e^{2\pi i k/n} \quad \text{for } k = 0, 1, 2, \ldots, n-1 \] However, since we are summing from \( 1 \) to \( n-1 \), we will consider \( \alpha_1, \alpha_2, \ldots, \alpha_{n-1} \). 2. **Sum of Roots**: The sum of all \( n \)-th roots of unity is: \[ \sum_{k=0}^{n-1} \alpha_k = 0 \] This implies: \[ 1 + \sum_{k=1}^{n-1} \alpha_k = 0 \Rightarrow \sum_{k=1}^{n-1} \alpha_k = -1 \] 3. **Calculating the Required Sum**: We need to calculate: \[ \sum_{1 \leq i \leq j \leq n-1} \alpha_i \alpha_j \] This can be rewritten using the identity: \[ \sum_{i=1}^{n-1} \alpha_i^2 + 2 \sum_{1 \leq i < j \leq n-1} \alpha_i \alpha_j \] Let \( S = \sum_{i=1}^{n-1} \alpha_i \). Then: \[ S^2 = \left(\sum_{i=1}^{n-1} \alpha_i\right)^2 = \sum_{i=1}^{n-1} \alpha_i^2 + 2 \sum_{1 \leq i < j \leq n-1} \alpha_i \alpha_j \] Rearranging gives: \[ 2 \sum_{1 \leq i < j \leq n-1} \alpha_i \alpha_j = S^2 - \sum_{i=1}^{n-1} \alpha_i^2 \] 4. **Finding \( S^2 \)**: Since \( S = -1 \): \[ S^2 = (-1)^2 = 1 \] 5. **Finding \( \sum_{i=1}^{n-1} \alpha_i^2 \)**: The sum of the squares of the \( n \)-th roots of unity can be calculated as follows: \[ \sum_{i=1}^{n-1} \alpha_i^2 = \sum_{k=0}^{n-1} \alpha_k^2 - 1 = \sum_{k=0}^{n-1} e^{4\pi i k/n} - 1 \] The sum \( \sum_{k=0}^{n-1} e^{4\pi i k/n} \) is also zero since it represents the \( n \)-th roots of unity for \( n \) roots. Thus: \[ \sum_{i=1}^{n-1} \alpha_i^2 = 0 - 1 = -1 \] 6. **Final Calculation**: Substituting back into our equation: \[ 2 \sum_{1 \leq i < j \leq n-1} \alpha_i \alpha_j = 1 - (-1) = 2 \] Therefore: \[ \sum_{1 \leq i < j \leq n-1} \alpha_i \alpha_j = 1 \] 7. **Conclusion**: The required sum is: \[ \sum_{1 \leq i \leq j \leq n-1} \alpha_i \alpha_j = \sum_{1 \leq i < j \leq n-1} \alpha_i \alpha_j + \sum_{i=1}^{n-1} \alpha_i^2 = 1 + (-1) = 0 \] ### Final Answer: \[ \sum_{1 \leq i \leq j \leq n-1} \alpha_i \alpha_j = 0 \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 1|90 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

If nge3and1,alpha_(1),alpha_(2),alpha_(3),...,alpha_(n-1) are the n,nth roots of unity, then find value of (sumsum)_("1"le"i" lt "j" le "n" - "1" ) alpha _ "i" alpha _ "j"

If alpha_(0),alpha_(1),alpha_(2),...,alpha_(n-1) are the n, nth roots of the unity , then find the value of sum_(i=0)^(n-1)(alpha_(i))/(2-a_(i)).

If 1,alpha,alpha^(2),.......,alpha^(n-1) are the n^(th) roots of unity, then sum_(i=1)^(n-1)(1)/(2-alpha^(i)) is equal to:

If 1,alpha_(1),alpha_(2),alpha_(3),...,alpha_(n-1) are n, nth roots of unity, then (1-alpha_(1))(1-alpha_(2))(1-alpha_(3))...(1-alpha_(n-1)) equals to

If 1,alpha,alpha^2,alpha^3,......,alpha^(n-1) are n n^(th) roots of unity, then find the value of (2011-alpha)(2011-alpha^2)....(2011-alpha^(n-1))

If 1,alpha_1,alpha_2, dotalpha_(2016) are (2017)^(t h) roots of unity, then the value of sum_(r=1)^(2016)r(alpha_r+alpha_(2017-r))"equals" -2016 (b) -2017 2017 (d) 2016

If 1,alpha_1,alpha_2, ,alpha_(n-1) are the n t h roots of unity, prove that (1-alpha_1)(1-alpha_2)(1-alpha_(n-1))=ndot Deduce that sinpi/nsin(2pi)/n sin((n-1)pi)/n=n/(2^(n-1))

If 1,alpha_1, alpha_2, …alpha_(n-1) be nth roots of unity then (1+alpha_1)(1+alpha_2)……....(1+alpha_(n-1))= (A) 0 or 1 according as n is even or odd (B) 0 or 1 according as n is odd or even (C) n (D) -n

If 1,alpha,alpha^(2),……….,alpha^(n-1) are n^(th) root of unity, the value of (3-alpha)(3-alpha^(2))(3-alpha^(3))……(3-alpha^(n-1)) , is

If 1, alpha_(1), alpha_(2), alpha_(3),…….,alpha_(s) are ninth roots of unity (taken in counter -clockwise sequence in the Argard plane). Then find the value of |(2-alpha_(1))(2-alpha_(3)),(2-alpha_(5))(2-alpha_(7)) |.

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 2
  1. Find number of values of complex numbers omega satisfying the system o...

    Text Solution

    |

  2. For |z-1|=1, show that tan{[a r g(z-1)]//2}-(2i//z)=-idot

    Text Solution

    |

  3. If nge3and1,alpha(1),alpha(2),.......,alpha(n-1) are nth roots of unit...

    Text Solution

    |

  4. Let |z|=2and w=(z+1)/(z-1),where z ,w , in C (where C is the set of c...

    Text Solution

    |

  5. If z=x+i y is a complex number with x ,y in Qa n d|z|=1, then show th...

    Text Solution

    |

  6. If z^3+(3+2i)z+(-1+i a)=0 has one real roots, then the value of a lies...

    Text Solution

    |

  7. Given z=f(x)+ig(x) where f,g:(0,1) to (0,1) are real valued functions....

    Text Solution

    |

  8. Let z1a n dz2 be complex numbers such that z1!=z2 and |z1|=|z2|dot If ...

    Text Solution

    |

  9. If m and x are two real number s and i=sqrt(-1), prove that e^(2mico...

    Text Solution

    |

  10. Find the range of real number alpha for which the equation z + al...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. Find the point of intersection of the curves a r g(z-3i)=(3pi)/4a n d ...

    Text Solution

    |

  13. If the equation z^4+a1z^3+a2z^2+a3z+a4=0 where a1,a2,a3,a4 are real co...

    Text Solution

    |

  14. The value of the expression 2(1+(1)/(omega))(1+(1)/(omega^(2)))+3(2+(1...

    Text Solution

    |

  15. If z=ilog(e)(2-sqrt(3)),"where"i=sqrt(-1) then the cos z is equal to

    Text Solution

    |

  16. If z satisfies |z+1| lt |z-2|, then w=3z+2+i

    Text Solution

    |

  17. For any two complex numbers z1\ a n d\ z2 and any two real numbers a ,...

    Text Solution

    |

  18. If w=cos""(pi)/(n)+isin""(pi)/(n) then value of 1+w+w^(2)+.......+w^(n...

    Text Solution

    |

  19. Find the sum 1xx(2-omega)xx(2-omega^(2))+2xx(-3-omega)xx(3-omega^(2))+...

    Text Solution

    |

  20. If (1+x+x^2)^n = a0+a1x+a2x2 +..............+a(2n)x^(2n) then the valu...

    Text Solution

    |