Home
Class 12
MATHS
Let z1a n dz2 be complex numbers such th...

Let `z_1a n dz_2` be complex numbers such that `z_1!=z_2` and `|z_1|=|z_2|dot` If `z_1` has positive real part and `z_2` has negative imaginary part, then `(z_1+z_2)/(z_1-z_2)` may be (a)zero (b) real and positive (c)real and negative (d) purely imaginary

A

zero

B

real and positive

C

real and negative

D

purely imaginary or zero

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 1|90 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

Let z_(1),z_(2) be two complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| . Then,

Let z_1a n dz_2 be two complex numbers such that ( z )_1+i( z )_2=0 and arg(z_1z_2)=pidot Then, find a r g(z_1)dot

Let z_(1),z_(2) be two complex numbers such that z_(1)+z_(2) and z_(1)z_(2) both are real, then

If z_1a n dz_2 are two complex numbers such that |z_1|=|z_2|a n d arg(z_1)+a r g(z_2)=pi , then show that z_1,=-( z )_2dot

If z_1a n dz_2 are two complex numbers such that |z_1|=|z_2|a n d arg(z_1)+a r g(z_2)=pi , then show that z_1,=- bar z _2dot

Let z_1,z_2 be complex numbers with |z_1|=|z_2|=1 prove that |z_1+1| +|z_2+1| +|z_1 z_2+1| geq2 .

Let Z_1 and Z_2 are two non-zero complex number such that |Z_1+Z_2|=|Z_1|=|Z_2| , then Z_1/Z_2 may be :

Let z_1 and z_2 be two non - zero complex numbers such that z_1/z_2+z_2/z_1=1 then the origin and points represented by z_1 and z_2

If z_1 and z_2 are two complex numbers such that |z_1|lt1lt|z_2| then prove that |(1-z_1barz_2)/(z_1-z_2)|lt1

For any two complex number z_1a n d\ z_2 prove that: |z_1+z_2|geq|z_1|-|z_2|

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 2
  1. For |z-1|=1, show that tan{[a r g(z-1)]//2}-(2i//z)=-idot

    Text Solution

    |

  2. If nge3and1,alpha(1),alpha(2),.......,alpha(n-1) are nth roots of unit...

    Text Solution

    |

  3. Let |z|=2and w=(z+1)/(z-1),where z ,w , in C (where C is the set of c...

    Text Solution

    |

  4. If z=x+i y is a complex number with x ,y in Qa n d|z|=1, then show th...

    Text Solution

    |

  5. If z^3+(3+2i)z+(-1+i a)=0 has one real roots, then the value of a lies...

    Text Solution

    |

  6. Given z=f(x)+ig(x) where f,g:(0,1) to (0,1) are real valued functions....

    Text Solution

    |

  7. Let z1a n dz2 be complex numbers such that z1!=z2 and |z1|=|z2|dot If ...

    Text Solution

    |

  8. If m and x are two real number s and i=sqrt(-1), prove that e^(2mico...

    Text Solution

    |

  9. Find the range of real number alpha for which the equation z + al...

    Text Solution

    |

  10. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  11. Find the point of intersection of the curves a r g(z-3i)=(3pi)/4a n d ...

    Text Solution

    |

  12. If the equation z^4+a1z^3+a2z^2+a3z+a4=0 where a1,a2,a3,a4 are real co...

    Text Solution

    |

  13. The value of the expression 2(1+(1)/(omega))(1+(1)/(omega^(2)))+3(2+(1...

    Text Solution

    |

  14. If z=ilog(e)(2-sqrt(3)),"where"i=sqrt(-1) then the cos z is equal to

    Text Solution

    |

  15. If z satisfies |z+1| lt |z-2|, then w=3z+2+i

    Text Solution

    |

  16. For any two complex numbers z1\ a n d\ z2 and any two real numbers a ,...

    Text Solution

    |

  17. If w=cos""(pi)/(n)+isin""(pi)/(n) then value of 1+w+w^(2)+.......+w^(n...

    Text Solution

    |

  18. Find the sum 1xx(2-omega)xx(2-omega^(2))+2xx(-3-omega)xx(3-omega^(2))+...

    Text Solution

    |

  19. If (1+x+x^2)^n = a0+a1x+a2x2 +..............+a(2n)x^(2n) then the valu...

    Text Solution

    |

  20. If 1,alpha,alpha^(2),.......,alpha^(n-1) are the n^(th) roots of unity...

    Text Solution

    |