Home
Class 12
MATHS
The value of the expression 2(1+(1)/(ome...

The value of the expression `2(1+(1)/(omega))(1+(1)/(omega^(2)))+3(2+(1)/(omega))(2+(1)/(omega^(2)))+4(3+(1)/(omega^()))(3+(1)/(omega^(2)))+.......+(n+1)(n+(1)/(omega^()))(n+(1)/(omega^(2)))` where `omega` is an imaginary cube roots of unity, is:

A

`(n(n^(2)+2))/(3)`

B

`(n(n^(2)-2))/(3)`

C

`(n^(2)(n+1)^(2)+4n)/(4)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ S = 2\left(1 + \frac{1}{\omega}\right)\left(1 + \frac{1}{\omega^2}\right) + 3\left(2 + \frac{1}{\omega}\right)\left(2 + \frac{1}{\omega^2}\right) + 4\left(3 + \frac{1}{\omega}\right)\left(3 + \frac{1}{\omega^2}\right) + \ldots + (n+1)\left(n + \frac{1}{\omega}\right)\left(n + \frac{1}{\omega^2}\right) \] where \(\omega\) is an imaginary cube root of unity, we start by recalling some properties of \(\omega\): 1. \(\omega^3 = 1\) 2. \(1 + \omega + \omega^2 = 0\) ### Step 1: General Term Analysis The general term of the series can be expressed as: \[ T_r = (r+1)\left(r + \frac{1}{\omega}\right)\left(r + \frac{1}{\omega^2}\right) \] ### Step 2: Simplifying the General Term We can simplify \(T_r\): \[ T_r = (r + 1)\left(r + \frac{1}{\omega}\right)\left(r + \frac{1}{\omega^2}\right) \] Using the fact that \(\frac{1}{\omega} + \frac{1}{\omega^2} = \frac{\omega + \omega^2}{\omega^3} = \frac{-1}{1} = -1\) and \(\frac{1}{\omega} \cdot \frac{1}{\omega^2} = \frac{1}{\omega^3} = 1\): \[ T_r = (r + 1)\left(r^2 + \left(\frac{1}{\omega} + \frac{1}{\omega^2}\right)r + \frac{1}{\omega} \cdot \frac{1}{\omega^2}\right) \] This simplifies to: \[ T_r = (r + 1)\left(r^2 - r + 1\right) \] ### Step 3: Expanding the General Term Now, we expand \(T_r\): \[ T_r = (r + 1)(r^2 - r + 1) = r^3 - r^2 + r + r^2 - r + 1 = r^3 + 1 \] ### Step 4: Summing the Series Now, we need to sum \(T_r\) from \(r = 1\) to \(n\): \[ S = \sum_{r=1}^{n} (r^3 + 1) = \sum_{r=1}^{n} r^3 + \sum_{r=1}^{n} 1 \] The sum of the first \(n\) cubes is given by: \[ \sum_{r=1}^{n} r^3 = \left(\frac{n(n+1)}{2}\right)^2 \] And the sum of \(1\) from \(1\) to \(n\) is simply \(n\): \[ \sum_{r=1}^{n} 1 = n \] Thus, we have: \[ S = \left(\frac{n(n+1)}{2}\right)^2 + n \] ### Step 5: Final Expression Combining the two parts, we get: \[ S = \frac{n^2(n+1)^2}{4} + n \] This can be simplified further if needed, but this is the final expression for the value of the given series.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 1|90 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

The value of the expression (1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+1/omega^(2))+(3+1/omega^(2))+…………..+(n+1/omega)(n+1/omega^(2)) , where omega is an imaginary cube root of unity, is

The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omega^2)+.+(n-1)(n-omega)(n-omega^2), where omega is an imaginary cube root of unity, is………

The value of the determinant |(1,omega^(3),omega^(5)),(omega^(3),1,omega^(4)),(omega^(5),omega^(4),1)| , where omega is an imaginary cube root of unity, is

If A =({:( 1,1,1),( 1,omega ^(2) , omega ),( 1 ,omega , omega ^(2)) :}) where omega is a complex cube root of unity then adj -A equals

If omega is a cube root of unity, then 1+ omega^(2)= …..

Prove the following (1+ omega) (1+ omega^(2)) (1 + omega^(4)) (1 + omega^(8)) ….to 2n factors = 1

Prove that (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8))(1-omega^(8)+omega^(16)).... to 2^(n) factors = 2^(2n) .

Prove the following (1- omega + omega^(2)) (1- omega^(2) + omega^(4)) (1- omega^(4) + omega^(8)) …. to 2n factors = 2^(2n) where , ω is the cube root of unity.

Evaluate |(1,omega,omega^2),(omega,omega^2,1),(omega^2,omega, omega)| where omega is cube root of unity.

Prove that the value of determinant |{:(1,,omega,,omega^(2)),(omega ,,omega^(2),,1),( omega^(2),, 1,,omega):}|=0 where omega is complex cube root of unity .

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 2
  1. For |z-1|=1, show that tan{[a r g(z-1)]//2}-(2i//z)=-idot

    Text Solution

    |

  2. If nge3and1,alpha(1),alpha(2),.......,alpha(n-1) are nth roots of unit...

    Text Solution

    |

  3. Let |z|=2and w=(z+1)/(z-1),where z ,w , in C (where C is the set of c...

    Text Solution

    |

  4. If z=x+i y is a complex number with x ,y in Qa n d|z|=1, then show th...

    Text Solution

    |

  5. If z^3+(3+2i)z+(-1+i a)=0 has one real roots, then the value of a lies...

    Text Solution

    |

  6. Given z=f(x)+ig(x) where f,g:(0,1) to (0,1) are real valued functions....

    Text Solution

    |

  7. Let z1a n dz2 be complex numbers such that z1!=z2 and |z1|=|z2|dot If ...

    Text Solution

    |

  8. If m and x are two real number s and i=sqrt(-1), prove that e^(2mico...

    Text Solution

    |

  9. Find the range of real number alpha for which the equation z + al...

    Text Solution

    |

  10. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  11. Find the point of intersection of the curves a r g(z-3i)=(3pi)/4a n d ...

    Text Solution

    |

  12. If the equation z^4+a1z^3+a2z^2+a3z+a4=0 where a1,a2,a3,a4 are real co...

    Text Solution

    |

  13. The value of the expression 2(1+(1)/(omega))(1+(1)/(omega^(2)))+3(2+(1...

    Text Solution

    |

  14. If z=ilog(e)(2-sqrt(3)),"where"i=sqrt(-1) then the cos z is equal to

    Text Solution

    |

  15. If z satisfies |z+1| lt |z-2|, then w=3z+2+i

    Text Solution

    |

  16. For any two complex numbers z1\ a n d\ z2 and any two real numbers a ,...

    Text Solution

    |

  17. If w=cos""(pi)/(n)+isin""(pi)/(n) then value of 1+w+w^(2)+.......+w^(n...

    Text Solution

    |

  18. Find the sum 1xx(2-omega)xx(2-omega^(2))+2xx(-3-omega)xx(3-omega^(2))+...

    Text Solution

    |

  19. If (1+x+x^2)^n = a0+a1x+a2x2 +..............+a(2n)x^(2n) then the valu...

    Text Solution

    |

  20. If 1,alpha,alpha^(2),.......,alpha^(n-1) are the n^(th) roots of unity...

    Text Solution

    |