Home
Class 12
MATHS
If w=cos""(pi)/(n)+isin""(pi)/(n) then v...

If `w=cos""(pi)/(n)+isin""(pi)/(n)` then value of `1+w+w^(2)+.......+w^(n-1)` is :

A

`1+i`

B

`1+itan((pi)/(n))`

C

`1+icot((pi)/(2n))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( S_n = 1 + w + w^2 + \ldots + w^{n-1} \) where \( w = \cos\left(\frac{\pi}{n}\right) + i \sin\left(\frac{\pi}{n}\right) \). ### Step-by-step Solution: 1. **Express \( w \) in Exponential Form**: \[ w = e^{i \frac{\pi}{n}} \] 2. **Recognize the Series as a Geometric Series**: The expression \( S_n \) can be recognized as a geometric series with the first term \( a = 1 \), common ratio \( r = w \), and \( n \) terms. \[ S_n = 1 + w + w^2 + \ldots + w^{n-1} \] 3. **Use the Formula for the Sum of a Geometric Series**: The sum of a geometric series can be calculated using the formula: \[ S_n = \frac{a(1 - r^n)}{1 - r} \] Substituting \( a = 1 \) and \( r = w \): \[ S_n = \frac{1 - w^n}{1 - w} \] 4. **Calculate \( w^n \)**: Since \( w = e^{i \frac{\pi}{n}} \): \[ w^n = \left(e^{i \frac{\pi}{n}}\right)^n = e^{i \pi} = -1 \] 5. **Substitute \( w^n \) into the Sum**: Now substituting \( w^n = -1 \) into the expression for \( S_n \): \[ S_n = \frac{1 - (-1)}{1 - w} = \frac{1 + 1}{1 - w} = \frac{2}{1 - w} \] 6. **Simplify \( 1 - w \)**: We know that: \[ w = \cos\left(\frac{\pi}{n}\right) + i \sin\left(\frac{\pi}{n}\right) \] Therefore: \[ 1 - w = 1 - \left(\cos\left(\frac{\pi}{n}\right) + i \sin\left(\frac{\pi}{n}\right)\right) = 1 - \cos\left(\frac{\pi}{n}\right) - i \sin\left(\frac{\pi}{n}\right) \] 7. **Final Expression for \( S_n \)**: Thus, we have: \[ S_n = \frac{2}{1 - \cos\left(\frac{\pi}{n}\right) - i \sin\left(\frac{\pi}{n}\right)} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 1|90 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

The maximum intensity in the case of n identical incoherent waves each of intensity 2(W)/(m^2)" is n "32(W)/(m^2) the value of n is.

Let omega be the complex number cos((2pi)/3)+isin((2pi)/3) . Then the number of distinct complex cos numbers z satisfying Delta=|(z+1,omega,omega^2),(omega,z+omega^2,1),(omega^2,1,z+omega)|=0 is

Let omega be the complex number cos((2pi)/3)+isin((2pi)/3) . Then the number of distinct complex cos numbers z satisfying Delta=|(z+1,omega,omega^2),(omega,z+omega^2,1),(omega^2,1,z+omega)|=0 is

Let omega be the complex number cos((2pi)/3)+isin((2pi)/3) . Then the number of distinct complex cos numbers z satisfying Delta=|(z+1,omega,omega^2),(omega,z+omega^2,1),(omega^2,1,z+omega)|=0 is

If w is an imaginary cube root of unity, find the value of |[1,w, w^2],[ w ,w^2 ,1],[w^2 ,1,w]| .

If f(x)=(x^(4)+x^(2)+1)/(x^(2)-x+1) , the value of f(omega^(n)) (where 'omega' is the non-real root of the equation z^(3)=1 and 'n' is a multiple of 3), is ……….. .

The voltage over a cycle varies as V=V_(0)sin omega t for 0 le t le (pi)/(omega) =-V_(0)sin omega t for (pi)/(omega)le t le (2pi)/(omega) The average value of the voltage one cycle is

The voltage over a cycle varies as V=V_(0)sin omega t for 0 le t le (pi)/(omega) =-V_(0)sin omega t for (pi)/(omega)le t le (2pi)/(omega) The average value of the voltage one cycle is

If 1,omega,omega^(2),...omega^(n-1) are n, nth roots of unity, find the value of (9-omega)(9-omega^(2))...(9-omega^(n-1)).

If (sin^(-1)x+sin^(-1)y)(sin^(-1)Z+sin^(-1)w)=pi^(2) and n_(1),n_(2),n_(3),n_(4) in N value of |(x^(n1),y^(n2)),(z^(n)3,w^(n4))| cannot be equal to

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 2
  1. For |z-1|=1, show that tan{[a r g(z-1)]//2}-(2i//z)=-idot

    Text Solution

    |

  2. If nge3and1,alpha(1),alpha(2),.......,alpha(n-1) are nth roots of unit...

    Text Solution

    |

  3. Let |z|=2and w=(z+1)/(z-1),where z ,w , in C (where C is the set of c...

    Text Solution

    |

  4. If z=x+i y is a complex number with x ,y in Qa n d|z|=1, then show th...

    Text Solution

    |

  5. If z^3+(3+2i)z+(-1+i a)=0 has one real roots, then the value of a lies...

    Text Solution

    |

  6. Given z=f(x)+ig(x) where f,g:(0,1) to (0,1) are real valued functions....

    Text Solution

    |

  7. Let z1a n dz2 be complex numbers such that z1!=z2 and |z1|=|z2|dot If ...

    Text Solution

    |

  8. If m and x are two real number s and i=sqrt(-1), prove that e^(2mico...

    Text Solution

    |

  9. Find the range of real number alpha for which the equation z + al...

    Text Solution

    |

  10. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  11. Find the point of intersection of the curves a r g(z-3i)=(3pi)/4a n d ...

    Text Solution

    |

  12. If the equation z^4+a1z^3+a2z^2+a3z+a4=0 where a1,a2,a3,a4 are real co...

    Text Solution

    |

  13. The value of the expression 2(1+(1)/(omega))(1+(1)/(omega^(2)))+3(2+(1...

    Text Solution

    |

  14. If z=ilog(e)(2-sqrt(3)),"where"i=sqrt(-1) then the cos z is equal to

    Text Solution

    |

  15. If z satisfies |z+1| lt |z-2|, then w=3z+2+i

    Text Solution

    |

  16. For any two complex numbers z1\ a n d\ z2 and any two real numbers a ,...

    Text Solution

    |

  17. If w=cos""(pi)/(n)+isin""(pi)/(n) then value of 1+w+w^(2)+.......+w^(n...

    Text Solution

    |

  18. Find the sum 1xx(2-omega)xx(2-omega^(2))+2xx(-3-omega)xx(3-omega^(2))+...

    Text Solution

    |

  19. If (1+x+x^2)^n = a0+a1x+a2x2 +..............+a(2n)x^(2n) then the valu...

    Text Solution

    |

  20. If 1,alpha,alpha^(2),.......,alpha^(n-1) are the n^(th) roots of unity...

    Text Solution

    |