Home
Class 12
MATHS
If 1,alpha,alpha^(2),.......,alpha^(n-1)...

If `1,alpha,alpha^(2),.......,alpha^(n-1)` are the `n^(th)` roots of unity, then `sum_(i=1)^(n-1)(1)/(2-alpha^(i))` is equal to:

A

`((n-2)2^(n-1)+1)/(2^(n)-1)`

B

`(n-2)2^(n)`

C

`((n-2).2^(n-1))/(2^(n)-1)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum: \[ S = \sum_{i=1}^{n-1} \frac{1}{2 - \alpha^i} \] where \( \alpha \) is an \( n \)-th root of unity. The \( n \)-th roots of unity are given by: \[ 1, \alpha, \alpha^2, \ldots, \alpha^{n-1} \] and they satisfy the equation \( x^n - 1 = 0 \). ### Step 1: Understanding the Roots of Unity The \( n \)-th roots of unity can be expressed as: \[ \alpha = e^{2\pi i k/n} \quad \text{for } k = 0, 1, 2, \ldots, n-1 \] ### Step 2: Using the Logarithmic Derivative We can use the property of logarithmic differentiation on the polynomial whose roots are the \( n \)-th roots of unity: \[ P(x) = x^n - 1 = (x - 1)(x - \alpha)(x - \alpha^2) \cdots (x - \alpha^{n-1}) \] Taking the logarithm, we have: \[ \log P(x) = n \log x - \sum_{i=0}^{n-1} \log(x - \alpha^i) \] ### Step 3: Differentiate with Respect to \( x \) Differentiating both sides with respect to \( x \): \[ \frac{P'(x)}{P(x)} = \frac{n}{x} - \sum_{i=0}^{n-1} \frac{1}{x - \alpha^i} \] ### Step 4: Evaluating at \( x = 2 \) Substituting \( x = 2 \): \[ \frac{P'(2)}{P(2)} = \frac{n}{2} - \sum_{i=0}^{n-1} \frac{1}{2 - \alpha^i} \] ### Step 5: Calculate \( P(2) \) and \( P'(2) \) Calculating \( P(2) \): \[ P(2) = 2^n - 1 \] Calculating \( P'(x) \): \[ P'(x) = n x^{n-1} \] Thus, \[ P'(2) = n \cdot 2^{n-1} \] ### Step 6: Substitute Back Now substituting back into the equation: \[ \frac{n \cdot 2^{n-1}}{2^n - 1} = \frac{n}{2} - \sum_{i=0}^{n-1} \frac{1}{2 - \alpha^i} \] Rearranging gives: \[ \sum_{i=0}^{n-1} \frac{1}{2 - \alpha^i} = \frac{n}{2} - \frac{n \cdot 2^{n-1}}{2^n - 1} \] ### Step 7: Simplifying the Expression Now we can simplify the expression for \( S \): \[ S = \sum_{i=1}^{n-1} \frac{1}{2 - \alpha^i} = \frac{n \cdot 2^{n-1}}{2^n - 1} - \frac{1}{2 - 1} \] ### Final Result Thus, the final result for the sum is: \[ S = \frac{n \cdot 2^{n-1} - (2^n - 1)}{2^n - 1} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 1|90 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

If alpha_(0),alpha_(1),alpha_(2),...,alpha_(n-1) are the n, nth roots of the unity , then find the value of sum_(i=0)^(n-1)(alpha_(i))/(2-a_(i)).

If nge3and1,alpha_(1),alpha_(2),.......,alpha_(n-1) are nth roots of unity then the sum sum_(1leiltjlen-1)alpha_(i)alpha(j)=

If 1,alpha,alpha^2,alpha^3,......,alpha^(n-1) are n n^(th) roots of unity, then find the value of (2011-alpha)(2011-alpha^2)....(2011-alpha^(n-1))

If 1,alpha,alpha^(2),……….,alpha^(n-1) are n^(th) root of unity, the value of (3-alpha)(3-alpha^(2))(3-alpha^(3))……(3-alpha^(n-1)) , is

If 1,alpha_1,alpha_2, ,alpha_(n-1) are the n t h roots of unity, prove that (1-alpha_1)(1-alpha_2)(1-alpha_(n-1))=ndot Deduce that sinpi/nsin(2pi)/n sin((n-1)pi)/n=n/(2^(n-1))

If 1,alpha_(1),alpha_(2),alpha_(3),...,alpha_(n-1) are n, nth roots of unity, then (1-alpha_(1))(1-alpha_(2))(1-alpha_(3))...(1-alpha_(n-1)) equals to

If 1,alpha,alpha^(2),………..,alpha^(n-1) are the n, n^(th) roots of unity and z_(1) and z_(2) are any two complex numbers such that sum_(r=0)^(n-1)|z_(1)+alpha^(R ) z_(2)|^(2)=lambda(|z_(1)|^(2)+|z_(2)|^(2)) , then lambda=

If nge3and1,alpha_(1),alpha_(2),alpha_(3),...,alpha_(n-1) are the n,nth roots of unity, then find value of (sumsum)_("1"le"i" lt "j" le "n" - "1" ) alpha _ "i" alpha _ "j"

If alpha_(1), alpha_(2), …….., alpha_(n) are the n,n^(th) roots of unity, alpha_(r )=e (i2(r-1)pi)/(n), r=1,2,…n then ""^(n)C_(1)alpha_(1)+""^(n)C_(2)alpha_(2)+…..+""^(n)C_(n)alpha_(n) is equal to :

If 1,alpha_1,alpha_2, dotalpha_(2016) are (2017)^(t h) roots of unity, then the value of sum_(r=1)^(2016)r(alpha_r+alpha_(2017-r))"equals" -2016 (b) -2017 2017 (d) 2016

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 2
  1. For |z-1|=1, show that tan{[a r g(z-1)]//2}-(2i//z)=-idot

    Text Solution

    |

  2. If nge3and1,alpha(1),alpha(2),.......,alpha(n-1) are nth roots of unit...

    Text Solution

    |

  3. Let |z|=2and w=(z+1)/(z-1),where z ,w , in C (where C is the set of c...

    Text Solution

    |

  4. If z=x+i y is a complex number with x ,y in Qa n d|z|=1, then show th...

    Text Solution

    |

  5. If z^3+(3+2i)z+(-1+i a)=0 has one real roots, then the value of a lies...

    Text Solution

    |

  6. Given z=f(x)+ig(x) where f,g:(0,1) to (0,1) are real valued functions....

    Text Solution

    |

  7. Let z1a n dz2 be complex numbers such that z1!=z2 and |z1|=|z2|dot If ...

    Text Solution

    |

  8. If m and x are two real number s and i=sqrt(-1), prove that e^(2mico...

    Text Solution

    |

  9. Find the range of real number alpha for which the equation z + al...

    Text Solution

    |

  10. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  11. Find the point of intersection of the curves a r g(z-3i)=(3pi)/4a n d ...

    Text Solution

    |

  12. If the equation z^4+a1z^3+a2z^2+a3z+a4=0 where a1,a2,a3,a4 are real co...

    Text Solution

    |

  13. The value of the expression 2(1+(1)/(omega))(1+(1)/(omega^(2)))+3(2+(1...

    Text Solution

    |

  14. If z=ilog(e)(2-sqrt(3)),"where"i=sqrt(-1) then the cos z is equal to

    Text Solution

    |

  15. If z satisfies |z+1| lt |z-2|, then w=3z+2+i

    Text Solution

    |

  16. For any two complex numbers z1\ a n d\ z2 and any two real numbers a ,...

    Text Solution

    |

  17. If w=cos""(pi)/(n)+isin""(pi)/(n) then value of 1+w+w^(2)+.......+w^(n...

    Text Solution

    |

  18. Find the sum 1xx(2-omega)xx(2-omega^(2))+2xx(-3-omega)xx(3-omega^(2))+...

    Text Solution

    |

  19. If (1+x+x^2)^n = a0+a1x+a2x2 +..............+a(2n)x^(2n) then the valu...

    Text Solution

    |

  20. If 1,alpha,alpha^(2),.......,alpha^(n-1) are the n^(th) roots of unity...

    Text Solution

    |