Home
Class 12
MATHS
Show that sin^(-1)(2xsqrt(1-x^2))=2sin^(...

Show that `sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x`

A

[-1 , 1]

B

`[-(1)/(sqrt(2)), 1]`

C

`[-(1)/(sqrt(2)), (1)/(sqrt(2))]`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

Show that(i) sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x ,-1/(sqrt(2))lt=xlt=1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^2))=2cos^(-1)x ,1/(sqrt(2))lt=xlt=1

xsqrt(1+2x^(2))

Express in terms of : sin^(-1)(2xsqrt(1-x^(2))) to sin^(-1)x for 1gexgt1/(sqrt(2))

If sin^(-1)(2xsqrt(1-x^(2)))-2 sin^(-1) x=0 then x belongs to the interval

Differentiate sin^(-1)(2xsqrt(1-x^2)),

If cot(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)(xsqrt(6))),\ x!=0 , then possible value of x is

If sin ^(-1) x=(1)/(3) , then evaluate sin ^(-1) (2xsqrt(1-x^(2)))

Draw the graph of y=sin^(-1)(2xsqrt(1-x^(2)))

Prove that 2cos^(-1)x=sin^(-1)(2xsqrt(1-x^2))

Differentiate sin^(-1)(2xsqrt(1-x^2)),\ -1/(sqrt(2))