Home
Class 12
MATHS
cosec^(-1)(cos x) is real if...

`cosec^(-1)(cos x)` is real if

A

`x in [-1,1]`

B

`x in R`

C

x is an odd multiple of `(pi)/(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine when \( \csc^{-1}(\cos x) \) is real, we need to analyze the conditions under which the expression is defined. The cosecant inverse function, \( \csc^{-1}(y) \), is defined for \( y \) such that \( |y| \geq 1 \). Therefore, we need to find when \( |\cos x| \geq 1 \). ### Step-by-Step Solution: 1. **Understanding the Cosecant Function**: The cosecant function is defined as: \[ \csc x = \frac{1}{\sin x} \] Thus, \( \csc^{-1}(y) \) is defined for \( |y| \geq 1 \). 2. **Analyzing \( \cos x \)**: The cosine function, \( \cos x \), has a range of values between -1 and 1: \[ -1 \leq \cos x \leq 1 \] 3. **Setting the Condition**: For \( \csc^{-1}(\cos x) \) to be real, we require: \[ |\cos x| \geq 1 \] This means \( \cos x \) must be either \( 1 \) or \( -1 \). 4. **Finding Values of \( x \)**: The cosine function equals \( 1 \) at: \[ x = 2n\pi \quad \text{(where \( n \) is any integer)} \] The cosine function equals \( -1 \) at: \[ x = (2n + 1)\pi \quad \text{(where \( n \) is any integer)} \] 5. **Conclusion**: Therefore, \( \csc^{-1}(\cos x) \) is real if: \[ x = n\pi \quad \text{(where \( n \) is any integer)} \] ### Final Answer: The function \( \csc^{-1}(\cos x) \) is real if \( x \) is an integer multiple of \( \pi \). ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

cosec^(-1)3x

If cosec^(-1) ( cosec x) " and " cosec ( cosec^(-1) x) are equal functions, then the maximum range of value of x is

Draw in graph of y=" cosec"^(-1)("cosec x") .

Range of the function f(x)=cos^(-1)x+2cot^(-1)x+3cosec^(-1)x is equal to

The value of int(x^(2)+cos^(2)x)/(1+x^(2))"cosec"^(2)x dx is equal to:

The value of int(x^(2)+cos^(2)x)/(1+x^(2))"cosec"^(2)x dx is equal to:

If f(x) = sin^(-1) x. cos^(-1) x. tan^(-1) x . cot^(-1) x. sec^(-1) x. cosec^(-1) x , then which of the following statement (s) hold(s) good?

cosec^(-1)(-x),x in R-(-1,1), is equal to

The domain of the function f(x)=cos^(-1)(sec(cos^-1 x))+sin^(-1)(cosec(sin^(-1)x)) is

2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)