Home
Class 12
MATHS
If sin^(-1)x+sin^(-1)y=(2pi)/(3), cos^(-...

If `sin^(-1)x+sin^(-1)y=(2pi)/(3), cos^(-1)x-cos^(-1)y=(pi)/(3)` then the number of values of (x, y) is :

A

two

B

four

C

zero

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( x \) and \( y \) given the equations: 1. \( \sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3} \) 2. \( \cos^{-1} x - \cos^{-1} y = \frac{\pi}{3} \) ### Step 1: Rewrite the equations using known identities We know that: - \( \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \) Using this identity, we can rewrite the second equation: \[ \cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x \] Substituting this into the second equation gives: \[ \left(\frac{\pi}{2} - \sin^{-1} x\right) - \cos^{-1} y = \frac{\pi}{3} \] ### Step 2: Simplify the second equation Rearranging the second equation, we get: \[ \frac{\pi}{2} - \sin^{-1} x - \cos^{-1} y = \frac{\pi}{3} \] Now, we can express \( \cos^{-1} y \) in terms of \( \sin^{-1} y \): \[ \cos^{-1} y = \frac{\pi}{2} - \sin^{-1} y \] Substituting this into the equation gives: \[ \frac{\pi}{2} - \sin^{-1} x - \left(\frac{\pi}{2} - \sin^{-1} y\right) = \frac{\pi}{3} \] This simplifies to: \[ \sin^{-1} y - \sin^{-1} x = \frac{\pi}{3} \] ### Step 3: Set up the equations Now we have two equations: 1. \( \sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3} \) 2. \( \sin^{-1} y - \sin^{-1} x = \frac{\pi}{3} \) ### Step 4: Solve the equations Let \( a = \sin^{-1} x \) and \( b = \sin^{-1} y \). We can rewrite the equations as: 1. \( a + b = \frac{2\pi}{3} \) 2. \( b - a = \frac{\pi}{3} \) Now, we can solve these equations simultaneously. Adding the two equations: \[ (a + b) + (b - a) = \frac{2\pi}{3} + \frac{\pi}{3} \] This simplifies to: \[ 2b = \pi \implies b = \frac{\pi}{2} \] Substituting \( b = \frac{\pi}{2} \) back into the first equation: \[ a + \frac{\pi}{2} = \frac{2\pi}{3} \] This simplifies to: \[ a = \frac{2\pi}{3} - \frac{\pi}{2} = \frac{4\pi - 3\pi}{6} = \frac{\pi}{6} \] ### Step 5: Find \( x \) and \( y \) Now we have: \[ \sin^{-1} x = \frac{\pi}{6} \implies x = \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \] \[ \sin^{-1} y = \frac{\pi}{2} \implies y = \sin\left(\frac{\pi}{2}\right) = 1 \] ### Conclusion Thus, the ordered pair \( (x, y) \) is \( \left(\frac{1}{2}, 1\right) \). ### Number of Values Since we derived unique values for \( x \) and \( y \), there is only **1 unique pair** \( (x, y) \).
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1)x+sin^(-1)y=(2pi)/3 and cos^(-1)x-cos^(-1)y=-pi/3 then the number of values of (x,y) is

If sin^(-1)x+sin^(-1)y=pi/3 and cos^(-1)x-cos^(-1)y=pi/6 , find the values of x and y .

If sin^-1 x + sin^-1 y = (2pi)/3, then cos^-1 x + cos^-1 y =

If sin ^(-1) x + sin ^(-1) y = (pi)/(6) , then cos^(-1) x + cos ^(-1) y =?

If sin^-1 x+sin^-1=(2pi)/3, then cos^-1 x cos^-1 y is equal to

If sin^-1 x+sin^-1=(2pi)/3, then cos^-1 x cos^-1 y is equal to

If cos^(-1) x = (pi)/(3) , the find the value of sin ^(-1)x .

Let x+(1)/(x)=2, y+(1)/(y)=-2 and sin^(-1)x+cos^(-1)y=m pi , then the value of m is

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2 , then write the value of x+y+z .

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1