Home
Class 12
MATHS
If sin^-1 x + sin^-1 y = (2pi)/3, then c...

If `sin^-1 x + sin^-1 y = (2pi)/3,` then `cos^-1 x + cos^-1 y =`

A

`(2pi)/(3)`

B

`(pi)/(3)`

C

`(pi)/(6)`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3} \), we need to find \( \cos^{-1} x + \cos^{-1} y \). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ \sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3} \] 2. **Use the identity for sine and cosine inverses:** We know that: \[ \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \] This means we can express \( \sin^{-1} x \) and \( \sin^{-1} y \) in terms of \( \cos^{-1} x \) and \( \cos^{-1} y \): \[ \sin^{-1} x = \frac{\pi}{2} - \cos^{-1} x \] \[ \sin^{-1} y = \frac{\pi}{2} - \cos^{-1} y \] 3. **Substitute these expressions into the original equation:** \[ \left( \frac{\pi}{2} - \cos^{-1} x \right) + \left( \frac{\pi}{2} - \cos^{-1} y \right) = \frac{2\pi}{3} \] 4. **Combine the terms:** \[ \pi - \cos^{-1} x - \cos^{-1} y = \frac{2\pi}{3} \] 5. **Rearranging the equation:** \[ - \cos^{-1} x - \cos^{-1} y = \frac{2\pi}{3} - \pi \] \[ - \cos^{-1} x - \cos^{-1} y = \frac{2\pi}{3} - \frac{3\pi}{3} \] \[ - \cos^{-1} x - \cos^{-1} y = -\frac{\pi}{3} \] 6. **Multiply through by -1:** \[ \cos^{-1} x + \cos^{-1} y = \frac{\pi}{3} \] ### Final Answer: Thus, the value of \( \cos^{-1} x + \cos^{-1} y \) is: \[ \cos^{-1} x + \cos^{-1} y = \frac{\pi}{3} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

If sin^-1 x+sin^-1=(2pi)/3, then cos^-1 x cos^-1 y is equal to

If sin^-1 x+sin^-1=(2pi)/3, then cos^-1 x cos^-1 y is equal to

If sin ^(-1) x + sin ^(-1) y = (pi)/(6) , then cos^(-1) x + cos ^(-1) y =?

(i) Evaluate : sec (cos^(-1).(1)/(2)) (ii) slove the equations sin^(-1) x + sin^(-1) y = (2pi)/(3) and cos^(-1) x - cos ^(-1) y = (pi)/(3)

If sin^(-1)x+sin^(-1)y=(2pi)/3 and cos^(-1)x-cos^(-1)y=-pi/3 then the number of values of (x,y) is

If sin^(-1)x+sin^(-1)y=(2pi)/(3), cos^(-1)x-cos^(-1)y=(pi)/(3) then the number of values of (x, y) is :

If sin^(-1)x+sin^(-1)y=pi/3 and cos^(-1)x-cos^(-1)y=pi/6 , find the values of x and y .

If |sin^(-1)x|+|cos^(-1)x| = pi/2, then x in

If -1lt=x , ylt=1 such that sin^(-1)x+sin^(-1)y=pi/2 , find the value of cos^(-1)x+cos^(-1)y .

If -1lt=x , ylt=1 such that sin^(-1)x+sin^(-1)y=pi/2, find the value of cos^(-1)x+cos^(-1)ydot