Home
Class 12
MATHS
The value of cot^(pi)/(4)-2 cot^(-13) is...

The value of `cot^(pi)/(4)-2 cot^(-13)` is

A

1

B

7

C

-1

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cot\left(\frac{\pi}{4}\right) - 2 \cot^{-1}(3) \), we will follow these steps: ### Step 1: Evaluate \( \cot\left(\frac{\pi}{4}\right) \) The cotangent of \( \frac{\pi}{4} \) is: \[ \cot\left(\frac{\pi}{4}\right) = 1 \] ### Step 2: Rewrite \( 2 \cot^{-1}(3) \) Using the identity \( \cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right) \), we can rewrite \( \cot^{-1}(3) \): \[ \cot^{-1}(3) = \tan^{-1}\left(\frac{1}{3}\right) \] Thus, \[ 2 \cot^{-1}(3) = 2 \tan^{-1}\left(\frac{1}{3}\right) \] ### Step 3: Use the double angle formula for tangent We can use the formula \( 2 \tan^{-1}(x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right) \). Here, \( x = \frac{1}{3} \): \[ 2 \tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}\left(\frac{2 \cdot \frac{1}{3}}{1 - \left(\frac{1}{3}\right)^2}\right) \] Calculating the denominator: \[ 1 - \left(\frac{1}{3}\right)^2 = 1 - \frac{1}{9} = \frac{8}{9} \] Now substituting back: \[ 2 \tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}\left(\frac{\frac{2}{3}}{\frac{8}{9}}\right) = \tan^{-1}\left(\frac{2 \cdot 9}{3 \cdot 8}\right) = \tan^{-1}\left(\frac{6}{8}\right) = \tan^{-1}\left(\frac{3}{4}\right) \] ### Step 4: Substitute back into the expression Now we substitute back into the original expression: \[ \cot\left(\frac{\pi}{4}\right) - 2 \cot^{-1}(3) = 1 - \tan^{-1}\left(\frac{3}{4}\right) \] ### Step 5: Use the identity for cotangent Using the identity \( \tan^{-1}(x) = \cot^{-1}\left(\frac{1}{x}\right) \): \[ 1 - \tan^{-1}\left(\frac{3}{4}\right) = \cot^{-1}\left(\frac{4}{3}\right) \] ### Step 6: Final evaluation Since \( \cot(\cot^{-1}(x)) = x \), we have: \[ \cot(\cot^{-1}\left(\frac{4}{3}\right)) = \frac{4}{3} \] Thus, the final answer is: \[ \frac{4}{3} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

The value of 1+cot ^2A is

cot((-15pi)/4)

The value of cot^(2)""(pi)/(7)+cot^(2)""(2pi)/(7)+cot^(2)""(3pi)/(7), is

The value of tan(pi+x)tan(pi-x)cot^(2)x is

The value of cot36^(@)cot72^(@), is

Prove that cot(pi/4-2cot^(- 1)3)=7

Prove that cot(pi/4-2cot^(- 1)3)=7

The value of cot((pi)/(4)+theta)cot((pi)/(4)-theta) is

The value of cot((7pi)/16)+2cot((3pi)/8)+cot((15pi)/16) is (a) 4 (b) 2 (c) -2 (d) -4

The solution set of inequality (cot^(-1)x)(tan^(-1)x)+(2-pi/2)cot^(-1)x-3tan^(-1)x-3(2-pi/2)>0 is (a , b), then the value of cot^(-1)a+cot^(-1)b is____