Home
Class 12
MATHS
The value of sin^2(cos^(-1)(1/2) )+ cos...

The value of `sin^2(cos^(-1)(1/2) )+ cos^2(sin^(-1)(1/3))` is: (A) `17/36` (B) `59/36` (C) `36/59` (D) none of these

A

`(17)/(36)`

B

`(59)/(36)`

C

`(36)/(59)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin^2(\cos^{-1}(1/2)) + \cos^2(\sin^{-1}(1/3)) \), we will follow these steps: ### Step 1: Evaluate \( \cos^{-1}(1/2) \) The value of \( \cos^{-1}(1/2) \) corresponds to the angle whose cosine is \( 1/2 \). This angle is \( \frac{\pi}{3} \) or \( 60^\circ \). ### Step 2: Find \( \sin(\cos^{-1}(1/2)) \) Using the identity \( \sin(\theta) = \sqrt{1 - \cos^2(\theta)} \): \[ \sin(\cos^{-1}(1/2)) = \sqrt{1 - (1/2)^2} = \sqrt{1 - 1/4} = \sqrt{3/4} = \frac{\sqrt{3}}{2} \] ### Step 3: Calculate \( \sin^2(\cos^{-1}(1/2)) \) Now, we square the result: \[ \sin^2(\cos^{-1}(1/2)) = \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4} \] ### Step 4: Evaluate \( \sin^{-1}(1/3) \) Let \( \theta = \sin^{-1}(1/3) \). This means \( \sin(\theta) = 1/3 \). ### Step 5: Find \( \cos(\sin^{-1}(1/3)) \) Using the identity \( \cos(\theta) = \sqrt{1 - \sin^2(\theta)} \): \[ \cos(\sin^{-1}(1/3)) = \sqrt{1 - (1/3)^2} = \sqrt{1 - 1/9} = \sqrt{8/9} = \frac{2\sqrt{2}}{3} \] ### Step 6: Calculate \( \cos^2(\sin^{-1}(1/3)) \) Now, we square the result: \[ \cos^2(\sin^{-1}(1/3)) = \left(\frac{2\sqrt{2}}{3}\right)^2 = \frac{8}{9} \] ### Step 7: Combine the results Now, we combine the two parts: \[ \sin^2(\cos^{-1}(1/2)) + \cos^2(\sin^{-1}(1/3)) = \frac{3}{4} + \frac{8}{9} \] ### Step 8: Find a common denominator The least common multiple of 4 and 9 is 36. We convert both fractions: \[ \frac{3}{4} = \frac{27}{36}, \quad \frac{8}{9} = \frac{32}{36} \] ### Step 9: Add the fractions Now we add the two fractions: \[ \frac{27}{36} + \frac{32}{36} = \frac{59}{36} \] ### Final Answer Thus, the value of \( \sin^2(\cos^{-1}(1/2)) + \cos^2(\sin^{-1}(1/3)) \) is \( \frac{59}{36} \).
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

sin^-1 (cos(sin^-1(sqrt(3)/2))= (A) pi/3 (B) pi/6 (C) - pi/6 (D) none of these

The value of cos^(-1)(-1)-sin^(-1)(1) is: a. pi b. pi/2 c. (3pi)/2 d. -(3pi)/2

The value of sin^(-1)sin17+cos^(-1)cos10 is equal to

Find the value of sin^(-1)[cos{sin^(-1)(-(sqrt(3))/2)}]

Find the value of sin^(-1)[cos{sin^(-1)(-(sqrt(3))/2)}] .

What is the value of cos^(-1)(cos(2pi)/3)+sin^(-1)(sin(2pi)/3) ?

Prove that sin^(-1)(3/5)+cos^(-1)(15/17)=cos^(-1)(36/85)

Value of cos^(-1) (-(1)/(2)) + sin ^(-1)""(1)/(2) is: a) 2 pi b) (pi)/(2) c) pi d) none of these

The value of cos^(-1)(cos 12)-sin^(-1)(sin14) is -2 b. 8pi-26 c. 4pi+2 none of these

The value of tan[cos^(-1)(4/5)+tan^(-1)(2/3)] is 6/(17) (b) 7/(16) (c) (16)/7 (d) none of these