Home
Class 12
MATHS
tan(cot^(-1)x) is equal to...

`tan(cot^(-1)x)` is equal to

A

`(pi)/(2)-x`

B

`cot(tan^(-1)x)`

C

tanx

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan(\cot^{-1} x) \), we can follow these steps: ### Step 1: Understand the relationship between inverse trigonometric functions We know that: \[ \tan(\cot^{-1} x) = \tan\left(\frac{\pi}{2} - \tan^{-1} x\right) \] This is because \( \cot^{-1} x \) can be expressed as \( \frac{\pi}{2} - \tan^{-1} x \). ### Step 2: Apply the tangent identity Using the identity \( \tan\left(\frac{\pi}{2} - \theta\right) = \cot(\theta) \), we can rewrite the expression: \[ \tan(\cot^{-1} x) = \cot(\tan^{-1} x) \] ### Step 3: Find the value of \( \cot(\tan^{-1} x) \) The cotangent of an angle is the reciprocal of the tangent. Therefore: \[ \cot(\tan^{-1} x) = \frac{1}{\tan(\tan^{-1} x)} \] Since \( \tan(\tan^{-1} x) = x \), we have: \[ \cot(\tan^{-1} x) = \frac{1}{x} \] ### Final Answer Thus, we conclude that: \[ \tan(\cot^{-1} x) = \frac{1}{x} \] ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

sin(cot^(-1)(tan(cos^(-1)x))) is equal to a) x b) sqrt(1-x^2) c) 1/x d) none of these

The value of 2tan^(-1)(cos e ctan^(-1)x-tancot^(-1)x) is equal to cot^(-1)x (b) cot^(-1)1/x tan^(-1)x (d) none of these

The value of 2tan^(-1)(cos e ctan^(-1)x-tancot^(-1)x) is equal to (a) cot^(-1)x (b) cot^(-1)1/x (c) tan^(-1)x (d) none of these

int e^(tan^(-1)x)(1+x+x^2)d(cot^(-1)x) is equal to (a) -e^(tan^(-1)x)+c (b) e^(tan^(-1)x)+c (c) -xe^(tan^(-1)x)+c (d) xe^(tan^(-1)x)+c

sin(tan^(-1)99 + cot^(-1)99) is equal to a) 0 b) -1 c) 1/2 d) 1

If the mapping f(x) = mx + c, m gt 0 maps [-1,1] onto [0,2] , then tan ( tan^(-1). 1/7 + cot ^(-1) 8 + cot ^(-1) 18) is equal to

The value of int_(-2pi)^(5pi) cot^(-1)(tan x) dx is equal to

If tan^(3)theta+cot^(3)theta=52 , then the value of tan^(2)theta+cot^(2)theta is equal to :

If tan^(3)theta+cot^(3)theta=52 , then the value of tan^(2)theta+cot^(2)theta is equal to :

The value of {:(lim),(xrarr0):}(xcot(4x))/(tan^2(3x)cot^2(6x)) is equal to