Home
Class 12
MATHS
If "cosec" ^(-1) x = sin ^(-1) ((1)/(...

If `"cosec" ^(-1) x = sin ^(-1) ((1)/(x))` then x may be -

A

1

B

`(-1)/(2)`

C

`(3)/(2) `

D

`(-3)/(2) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \csc^{-1}(x) = \sin^{-1}\left(\frac{1}{x}\right) \), we need to analyze the conditions under which this equality holds true. ### Step 1: Understand the definitions The cosecant function is the reciprocal of the sine function. Therefore, we can express the inverse cosecant function as: \[ \csc^{-1}(x) = \theta \implies \csc(\theta) = x \implies \sin(\theta) = \frac{1}{x} \] This means that the equation \( \csc^{-1}(x) = \sin^{-1}\left(\frac{1}{x}\right) \) is valid when both sides are defined. ### Step 2: Determine the domain of \( \csc^{-1}(x) \) The function \( \csc^{-1}(x) \) is defined for: \[ x \leq -1 \quad \text{or} \quad x \geq 1 \] This means that \( x \) must be either less than or equal to -1 or greater than or equal to 1. ### Step 3: Determine the domain of \( \sin^{-1}\left(\frac{1}{x}\right) \) The function \( \sin^{-1}(y) \) is defined for \( y \) in the range \([-1, 1]\). Therefore, for \( \sin^{-1}\left(\frac{1}{x}\right) \) to be defined, we need: \[ -1 \leq \frac{1}{x} \leq 1 \] This gives us two inequalities to solve. 1. From \( \frac{1}{x} \geq -1 \): \[ 1 \geq -x \implies x \geq -1 \] 2. From \( \frac{1}{x} \leq 1 \): \[ 1 \leq x \implies x \geq 1 \] ### Step 4: Combine the conditions Now we combine the conditions from both functions: - From \( \csc^{-1}(x) \): \( x \leq -1 \) or \( x \geq 1 \) - From \( \sin^{-1}\left(\frac{1}{x}\right) \): \( x \geq 1 \) Thus, the only valid solution for \( x \) that satisfies both conditions is: \[ x \geq 1 \] ### Conclusion The values of \( x \) that satisfy the equation \( \csc^{-1}(x) = \sin^{-1}\left(\frac{1}{x}\right) \) are: \[ x \in [1, \infty) \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

cosec^(-1)3x

sin^(-1)"(x)/(1+x)

If sin^2 (2 cos^-1 (tan x)) = 1 then x may be

Solve sec^(-1) x gt cosec^(-1) x

If sin^(- 1)(x)+sin^(- 1)(2x)=pi/3 then x=

If sin^(-1)x+sin^(-1)(1-x)+cos^(-1)x=0 , then x is

Prove that sin cot^(-1) tan cos^(-1) x = sin cosec^(-1) cot tan^(-1) x = x, " where " x in [0,1]

cosec^(-1)(cos x) is real if

If f(x)=sin^(-1)(cosec(sin^(-1)x))+cos^(-1)(sec(cos^(-1)x)) , then f(x) takes

If sec^(-1) x = cosec^(-1) y , then find the value of cos^(-1).(1)/(x) + cos^(-1).(1)/(y)