Home
Class 12
MATHS
For some x in [-1, 1] we have cos^(-1)x...

For some `x in [-1, 1]` we have `cos^(-1)x =tan^(-1)x`.
The value of `x^(2) ` is :

A

`(sqrt(5)-1)/(2)`

B

`(sqrt(5)+1)/(2)`

C

`(sqrt(3)-1)/(2)`

D

`(sqrt(3)+1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos^{-1}(x) = \tan^{-1}(x) \) for \( x \) in the interval \([-1, 1]\), we will follow these steps: ### Step 1: Set up the equation Let \( \tan^{-1}(x) = a \). Then, we have: \[ \tan(a) = x \] ### Step 2: Construct a right triangle From the definition of tangent, we can construct a right triangle where: - The opposite side (perpendicular) is \( x \) - The adjacent side (base) is \( 1 \) Using the Pythagorean theorem, the hypotenuse \( h \) can be calculated as: \[ h = \sqrt{x^2 + 1^2} = \sqrt{x^2 + 1} \] ### Step 3: Find \( \cos(a) \) The cosine of angle \( a \) is given by: \[ \cos(a) = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{1}{\sqrt{x^2 + 1}} \] ### Step 4: Substitute into the original equation Since we have \( \cos^{-1}(x) = a \), we can write: \[ \cos^{-1}(x) = \cos^{-1}\left(\frac{1}{\sqrt{x^2 + 1}}\right) \] This implies: \[ x = \frac{1}{\sqrt{x^2 + 1}} \] ### Step 5: Square both sides Squaring both sides of the equation gives: \[ x^2 = \frac{1}{x^2 + 1} \] ### Step 6: Rearrange the equation Multiplying both sides by \( x^2 + 1 \) leads to: \[ x^2(x^2 + 1) = 1 \] This simplifies to: \[ x^4 + x^2 - 1 = 0 \] ### Step 7: Solve the quadratic equation Let \( y = x^2 \). The equation becomes: \[ y^2 + y - 1 = 0 \] Using the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ y = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} = \frac{-1 \pm \sqrt{5}}{2} \] ### Step 8: Determine valid solutions This gives us two potential solutions for \( y \): \[ y_1 = \frac{-1 + \sqrt{5}}{2} \quad \text{and} \quad y_2 = \frac{-1 - \sqrt{5}}{2} \] Since \( y = x^2 \) must be non-negative, we discard \( y_2 \) because it is negative. Thus, we have: \[ x^2 = \frac{-1 + \sqrt{5}}{2} \] ### Final Answer The value of \( x^2 \) is: \[ \boxed{\frac{-1 + \sqrt{5}}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

For some x in [-1, 1] we have cos^(-1)x =tan^(-1)x . The value of sin(cos^(-1)x) is:

cos^(-1)x=tan^(-1)x then

Let cos(2 tan^(-1) x)=1/2 then the value of x is

2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)

If tan(cos^(-1) x) = sin (cot^(-1).(1)/(2)) , then find the value of x

If x lt 0 , then prove that cos^(-1) x = pi + tan^(-1). (sqrt(1 - x^(2)))/(x)

If sin^(-1) x = pi//5 , for some x in (-1, 1) , then find the value of cos^(-1) x

If tan x =1(1)/3 , find the value of : 4 sin^2x -3 cos^2x +2

If cos^(-1)((6x)/(1+9x^2))=-pi/2+2tan^(-1)3x , then find the value of xdot

The exhaustive set of values of a for which a - cot^(-1) 3x = 2 tan^(-1) 3x + cos^(-1) x sqrt3 + sin^(-1) x sqrt3 may have solution, is