Home
Class 12
MATHS
For some x in [-1, 1] we have cos^(-1)x...

For some `x in [-1, 1]` we have `cos^(-1)x =tan^(-1)x`.
The value of `sin(cos^(-1)x)` is:

A

`(sqrt(5)-1)/(2)`

B

`(sqrt(5)+1)/(2)`

C

`(sqrt(2)-1)/(2)`

D

`(sqrt(2)+1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given in the question: \[ \cos^{-1}(x) = \tan^{-1}(x) \] ### Step 1: Express \(\tan^{-1}(x)\) in terms of \(\cos^{-1}(x)\) From the identity of inverse trigonometric functions, we know that: \[ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \] If we let \(\theta = \cos^{-1}(x)\), then: \[ \tan(\theta) = \frac{\sin(\cos^{-1}(x))}{x} \] ### Step 2: Use the Pythagorean identity Using the Pythagorean identity, we can express \(\sin(\cos^{-1}(x))\): \[ \sin(\cos^{-1}(x)) = \sqrt{1 - x^2} \] ### Step 3: Set up the equation Since \(\tan^{-1}(x) = \theta\), we can write: \[ x = \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{\sqrt{1 - x^2}}{x} \] ### Step 4: Cross-multiply and simplify Cross-multiplying gives: \[ x^2 = \sqrt{1 - x^2} \] Squaring both sides results in: \[ x^4 = 1 - x^2 \] ### Step 5: Rearranging the equation Rearranging the equation gives us: \[ x^4 + x^2 - 1 = 0 \] ### Step 6: Let \(y = x^2\) Substituting \(y = x^2\), we get a quadratic equation: \[ y^2 + y - 1 = 0 \] ### Step 7: Solve the quadratic equation Using the quadratic formula \(y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): \[ y = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} = \frac{-1 \pm \sqrt{5}}{2} \] ### Step 8: Find the positive root Since \(y = x^2\) must be non-negative, we take the positive root: \[ y = \frac{-1 + \sqrt{5}}{2} \] ### Step 9: Substitute back to find \(x^2\) Thus, we have: \[ x^2 = \frac{-1 + \sqrt{5}}{2} \] ### Step 10: Find \(\sin(\cos^{-1}(x))\) Now we can find \(\sin(\cos^{-1}(x))\): \[ \sin(\cos^{-1}(x)) = \sqrt{1 - x^2} = \sqrt{1 - \frac{-1 + \sqrt{5}}{2}} = \sqrt{\frac{3 - \sqrt{5}}{2}} \] ### Final Answer The value of \(\sin(\cos^{-1}(x))\) is: \[ \sin(\cos^{-1}(x)) = \sqrt{\frac{3 - \sqrt{5}}{2}} \] ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

For some x in [-1, 1] we have cos^(-1)x =tan^(-1)x . The value of x^(2) is :

cos^(-1)x=tan^(-1)x then

If cos^(-1) x = (pi)/(3) , the find the value of sin ^(-1)x .

The value of sin[cot^(-1){cos(tan^(-1) x)}] is

Let cos(2 tan^(-1) x)=1/2 then the value of x is

If sin ^(-1) x =(pi)/(4) , find the value of cos^(-1) x .

If x=(1)/(5) , the value of cos(cos^(-1)x+2sin^(-1)x) is :

Write the value of cos(sin^(-1)x+cos^(-1)x) , |x|lt=1 .

Find the value of : sin (sin^(-1) x + cos^(-1) x)

If a le sin^(-1)x +cos^(-1)x+tan^(-1)x le b , then: