Home
Class 12
MATHS
cos("sin"^(-1)(1)/(2)+"cos"^(-1)(1)/(3))...

`cos("sin"^(-1)(1)/(2)+"cos"^(-1)(1)/(3))=`

A

`(sqrt(3)+sqrt(8))/(6)`

B

`(-sqrt(3)+sqrt(8))/(6)`

C

`(sqrt(3)-sqrt(8))/(6)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \cos\left(\sin^{-1}\left(\frac{1}{2}\right) + \cos^{-1}\left(\frac{1}{3}\right)\right) \), we can follow these steps: ### Step 1: Define the angles Let \( \theta = \sin^{-1}\left(\frac{1}{2}\right) \). This means that \( \sin(\theta) = \frac{1}{2} \). ### Step 2: Create a right triangle From the definition of sine, we can visualize this as a right triangle where: - The opposite side (perpendicular) is 1 (since \( \sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} \)). - The hypotenuse is 2. Using the Pythagorean theorem, we can find the adjacent side (base): \[ \text{base} = \sqrt{\text{hypotenuse}^2 - \text{opposite}^2} = \sqrt{2^2 - 1^2} = \sqrt{4 - 1} = \sqrt{3}. \] ### Step 3: Find \( \cos(\theta) \) Now we can find \( \cos(\theta) \): \[ \cos(\theta) = \frac{\text{base}}{\text{hypotenuse}} = \frac{\sqrt{3}}{2}. \] ### Step 4: Define the second angle Let \( \phi = \cos^{-1}\left(\frac{1}{3}\right) \). This means that \( \cos(\phi) = \frac{1}{3} \). ### Step 5: Use the cosine addition formula We need to find \( \cos(\theta + \phi) \) using the cosine addition formula: \[ \cos(\theta + \phi) = \cos(\theta)\cos(\phi) - \sin(\theta)\sin(\phi). \] ### Step 6: Substitute values We already have \( \cos(\theta) = \frac{\sqrt{3}}{2} \) and \( \sin(\theta) = \frac{1}{2} \). Now we need to find \( \sin(\phi) \). Using \( \sin^2(\phi) + \cos^2(\phi) = 1 \): \[ \sin^2(\phi) = 1 - \cos^2(\phi) = 1 - \left(\frac{1}{3}\right)^2 = 1 - \frac{1}{9} = \frac{8}{9}. \] Thus, \[ \sin(\phi) = \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3}. \] ### Step 7: Substitute into the cosine addition formula Now we can substitute: \[ \cos(\theta + \phi) = \left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{3}\right) - \left(\frac{1}{2}\right)\left(\frac{2\sqrt{2}}{3}\right). \] ### Step 8: Simplify the expression Calculating each term: \[ \cos(\theta + \phi) = \frac{\sqrt{3}}{6} - \frac{\sqrt{2}}{3}. \] To combine these fractions, we can find a common denominator: \[ \frac{\sqrt{3}}{6} - \frac{2\sqrt{2}}{6} = \frac{\sqrt{3} - 2\sqrt{2}}{6}. \] ### Final Answer Thus, the final answer is: \[ \cos\left(\sin^{-1}\left(\frac{1}{2}\right) + \cos^{-1}\left(\frac{1}{3}\right)\right) = \frac{\sqrt{3} - 2\sqrt{2}}{6}. \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

Write the value of sin^(-1)(1/3)-cos^(-1)(-1/3) .

Which of the following angles is greater ? theta_(1) = sin^(-1).(4)/(5) + sin^(-1).(1)/(3) and theta_(2) = cos^(-1).(4)/(5) + cos^(-1).(1)/(3)

The value of 2cos^(-1)(-1/2)-2 sin^(-1)(-1/2)-cos^(-1)(-1) is

For the principal values, evaluate each of the following : (i) sin^(-1)(-1/2)+2cos^(-1)(-(sqrt(3))/2) (ii) sin^(-1)(-(sqrt(3))/2)+cos^(-1)((sqrt(3))/2)

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

If alpha = sin^(-1)(sqrt(3)/2)+sin^(-1)(1/3) , beta =cos ^(-1)(sqrt(3)/2)+cos^(-1)(1/3) then

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

If sin^(-1)x in (0, (pi)/(2)) , then the value of tan((cos^(-1)(sin(cos^(-1)x))+sin^(-1)(cos(sin^(-1)x)))/(2)) is :

Evaluate the following cos [ cos^(-1) ( (-1)/3) - sin^(-1) ( 1/3)] .