Home
Class 12
MATHS
The value of tan(tan^(-1)5+"cot"^(-1)(1)...

The value of `tan(tan^(-1)5+"cot"^(-1)(1)/(3))` is :

A

`(4)/(7)`

B

`-(4)/(7)`

C

`(3)/(7)`

D

Not defined

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \tan\left(\tan^{-1}(5) + \cot^{-1}\left(\frac{1}{3}\right)\right) \), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \tan\left(\tan^{-1}(5) + \cot^{-1}\left(\frac{1}{3}\right)\right) \] ### Step 2: Use the cotangent identity Recall that \( \cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right) \). Therefore, we can rewrite \( \cot^{-1}\left(\frac{1}{3}\right) \) as: \[ \cot^{-1}\left(\frac{1}{3}\right) = \tan^{-1}(3) \] ### Step 3: Substitute back into the expression Now we can substitute this back into our expression: \[ \tan\left(\tan^{-1}(5) + \tan^{-1}(3)\right) \] ### Step 4: Use the addition formula for tangent We can use the formula for the tangent of a sum: \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] In our case, \( A = \tan^{-1}(5) \) and \( B = \tan^{-1}(3) \), so: \[ \tan\left(\tan^{-1}(5) + \tan^{-1}(3)\right) = \frac{\tan(\tan^{-1}(5)) + \tan(\tan^{-1}(3))}{1 - \tan(\tan^{-1}(5)) \tan(\tan^{-1}(3))} \] ### Step 5: Simplify using the values of tangent Since \( \tan(\tan^{-1}(5)) = 5 \) and \( \tan(\tan^{-1}(3)) = 3 \), we substitute these values: \[ = \frac{5 + 3}{1 - (5)(3)} = \frac{8}{1 - 15} = \frac{8}{-14} \] ### Step 6: Simplify the fraction Now, simplifying \( \frac{8}{-14} \): \[ = \frac{4}{-7} = -\frac{4}{7} \] ### Final Answer Thus, the value of \( \tan\left(\tan^{-1}(5) + \cot^{-1}\left(\frac{1}{3}\right)\right) \) is: \[ -\frac{4}{7} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

Find the value of cot(tan^(-1)a+cot^(-1)a)

Find the value of: cot(tan^(-1)a+cot^(-1)a)

Find the value of tan(sin^(-1)3/5+cot^(-1)3/2)

The value of tan^(-1)1+tan^(-1)2+tan^(-1)3 is

find the value of tan^(-1){cot(-1/4)}

Find the value of tan(sin^(-1)(3/5)+cot^(-1)(3/2))

Evaluate: (i) cot(tan^(-1)a+cot^(-1)a)

Find the value of 4 tan^(-1).(1)/(5) - tan^(-1).(1)/(70) + tan^(-1).(1)/(99)

Write the value of cos((tan^(-1)x+cot^(-1)x)/3) , when x=-1/(sqrt(3)) .

Write the value of tan(2tan^(-1)(1/5)) .