Home
Class 12
MATHS
If x=(1)/(5), the value of cos(cos^(-1)x...

If `x=(1)/(5)`, the value of `cos(cos^(-1)x+2sin^(-1)x)` is :

A

`-sqrt((24)/(25))`

B

`sqrt((24)/(25))`

C

`-(1)/(5)`

D

`(1)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cos(\cos^{-1}(x) + 2\sin^{-1}(x)) \) where \( x = \frac{1}{5} \). ### Step-by-step Solution: 1. **Substitute the value of \( x \)**: \[ x = \frac{1}{5} \] We need to evaluate: \[ \cos(\cos^{-1}(\frac{1}{5}) + 2\sin^{-1}(\frac{1}{5})) \] 2. **Use the identity for \( \sin^{-1}(x) \) and \( \cos^{-1}(x) \)**: We know that: \[ \sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2} \] Therefore, we can express \( \cos^{-1}(x) \) in terms of \( \sin^{-1}(x) \): \[ \cos^{-1}(\frac{1}{5}) = \frac{\pi}{2} - \sin^{-1}(\frac{1}{5}) \] 3. **Substitute \( \cos^{-1}(\frac{1}{5}) \) in the expression**: Now we can rewrite the expression: \[ \cos\left(\left(\frac{\pi}{2} - \sin^{-1}(\frac{1}{5})\right) + 2\sin^{-1}(\frac{1}{5})\right) \] Simplifying this gives: \[ \cos\left(\frac{\pi}{2} + \sin^{-1}(\frac{1}{5})\right) \] 4. **Use the cosine of a sum identity**: We know that: \[ \cos\left(\frac{\pi}{2} + \theta\right) = -\sin(\theta) \] Therefore: \[ \cos\left(\frac{\pi}{2} + \sin^{-1}(\frac{1}{5})\right) = -\sin(\sin^{-1}(\frac{1}{5})) \] 5. **Evaluate \( -\sin(\sin^{-1}(\frac{1}{5})) \)**: Since \( \sin(\sin^{-1}(x)) = x \), we have: \[ -\sin(\sin^{-1}(\frac{1}{5})) = -\frac{1}{5} \] 6. **Final Result**: Thus, the value of \( \cos(\cos^{-1}(\frac{1}{5}) + 2\sin^{-1}(\frac{1}{5})) \) is: \[ -\frac{1}{5} \] ### Summary: The final answer is: \[ \cos(\cos^{-1}(\frac{1}{5}) + 2\sin^{-1}(\frac{1}{5})) = -\frac{1}{5} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate : cos(2cos^(-1)x+sin^(-1)x)a tx=1/5

Write the value of cos(sin^(-1)x+cos^(-1)x) , |x|lt=1 .

Evaluate : cos(2cos^(-1)x+sin^(-1)x) a t x=1/5

Find the value of cos( 2 cos^(-1) x + sin^(-1) x) " when " x = 1/5

The value of cos(sin^(-1)x + cos^(-1)x) , where |x| le 1 , is

If sin^(-1)x in (0, (pi)/(2)) , then the value of tan((cos^(-1)(sin(cos^(-1)x))+sin^(-1)(cos(sin^(-1)x)))/(2)) is :

Evaluate: cos (2 cos ^(-1) x +sin ^(-1) x ) at x = (1)/(5).

Find the value of : sin (sin^(-1) x + cos^(-1) x)

Find the value of "cos"(2cos^(-1)x+sin^(-1)x) at x=1/5, where 0lt=pi and -pi/2lt=sin^(-1)xlt=pi/2dot

If sin ^(-1) x =(pi)/(4) , find the value of cos^(-1) x .