Home
Class 12
MATHS
The number of triple satisfying sin^(-1)...

The number of triple satisfying `sin^(-1)x+cos^(-1)y+sin^(-1)z=2pi` is

A

0

B

2

C

1

D

Infinite

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

The number of integer x satisfying sin^(-1)|x-2|+cos^(-1)(1-|3-x|)=pi/2 is 1 (b) 2 (c) 3 (d) 4

The value of x satisfying the equation cos^(-1)3x+sin^(-1)2x=pi is

The vaue of x satisfying sin^(-1)(x)+sin^(-1)(sqrt(15)x)=(pi)/2 is

The number of ordered pair(s) (x, y) of real numbers satisfying the equation 1+x^(2)+2x sin(cos^(-1)y)=0 , is :

Number of possible solution for the equation sin^(-1) x + cos^(-1)y=(11pi)/(2) is / are

The number of ordered triplets (x,y,z) satisfy the equation (sin^(- 1)x)^2=(pi^2)/4+(sec^(- 1)y)^2+(tan^(- 1)z)^2

Q. if sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2 , then

Let (x,y) be such that sin^(-1)(ax)+cos^(-1)y+cos^(-1)(bxy)=pi/2

If |sin^(-1)x|+|cos^(-1)x| = pi/2, then x in

If x , y , z in [-1,1] such that sin^(-1)x+sin^(-1)y+sin^(-1)z=-(3pi)/2, find the value of x^2+y^2+z^2dot