Home
Class 12
MATHS
If x+y+z=xyz, then tan^(-1)x+tan^(-1)y+t...

If `x+y+z=xyz`, then `tan^(-1)x+tan^(-1)y+tan^(-1)z=`

A

`pi`

B

`(pi)/(2)`

C

1

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x + y + z = xyz \) and we need to find \( \tan^{-1}x + \tan^{-1}y + \tan^{-1}z \), we can follow these steps: ### Step-by-Step Solution: 1. **Given Equation**: Start with the equation provided: \[ x + y + z = xyz \] 2. **Rearranging the Equation**: Rearranging gives: \[ x + y = xyz - z \] We can factor out \( z \) from the right side: \[ x + y = z(xy - 1) \] 3. **Using Inverse Tangent**: Let: \[ \tan^{-1}x = \alpha, \quad \tan^{-1}y = \beta \] Then: \[ x = \tan \alpha, \quad y = \tan \beta \] 4. **Applying the Tangent Addition Formula**: We can use the identity for the tangent of a sum: \[ \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \] Substituting \( x \) and \( y \): \[ \tan(\alpha + \beta) = \frac{x + y}{1 - xy} \] 5. **Substituting for \( x + y \)**: From step 2, substitute \( x + y \): \[ \tan(\alpha + \beta) = \frac{z(xy - 1)}{1 - xy} \] 6. **Simplifying the Expression**: This can be rewritten as: \[ \tan(\alpha + \beta) = -z \] (since \( z(xy - 1) \) can be rewritten as \( -z(1 - xy) \)). 7. **Finding the Angle**: Therefore, we have: \[ \alpha + \beta = \tan^{-1}(-z) \] 8. **Final Expression**: Now, adding \( \tan^{-1}z \) to both sides: \[ \tan^{-1}x + \tan^{-1}y + \tan^{-1}z = \tan^{-1}(-z) + \tan^{-1}z \] 9. **Using the Property of Inverse Tangents**: We know that: \[ \tan^{-1}(-z) + \tan^{-1}z = 0 \] 10. **Conclusion**: Thus, we conclude that: \[ \tan^{-1}x + \tan^{-1}y + \tan^{-1}z = 0 \] ### Final Answer: \[ \tan^{-1}x + \tan^{-1}y + \tan^{-1}z = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

If xy +yz+zx=1 then tan^(-1)x+tan^(-1)y+tan^(-1)z =

If x, y, z in R are such that they satisfy x + y + z = 1 and tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(4) , then the value of |x^(3)+y^(3)+z^(3)-3| is

If x,y,z are in AP and tan^(-1)x,tan^(-1)y,tan^(-1)z are also in AP, then

If x + y + z = xyz and x, y, z gt 0 , then find the value of tan^(-1) x + tan^(-1) y + tan^(-1) z

x≥0,y≥0,z≥0 and tan^(-1) x+tan^(-1) y+tan^(-1) z=k , the possible value(s) of k if x+y+z=xyz , then

x≥0,y≥0,z≥0 and tan^(-1) x+tan^(-1) y+tan^(-1) z=k , the possible value(s) of k if x=y=z and xyz ≥ 3 sqrt(3) , then

If x, y, z are in A.P. and tan^(-1) x, tan^(-1) y and tan^(-1)z are also in A.P. then show that x=y=z and y≠0

For x,y,z,t in R , if sin^(-1)x+cos^(-1)y+sec^(-1)z ge t^(2)-sqrt(2pi)*t+3pi , then the value of tan^(-1)x+tan^(-1)y+tan^(-1)z+tan^(-1)( sqrt((2)/(pi))t) is __________.

x≥0,y≥0,z≥0 and tan^(-1) x+tan^(-1) y+tan^(-1) z=k , the possible value(s) of k if x^2 + y^2+z^2 = 1, & \ x+y+z=sqrt(3) , then

x≥0,y≥0,z≥0 and tan^(-1) x+tan^(-1) y+tan^(-1) z=k , the possible value(s) of k if xy+yz+zx=1 , then