Home
Class 12
MATHS
If a le sin^(-1)x +cos^(-1)x+tan^(-1)x l...

If `a le sin^(-1)x +cos^(-1)x+tan^(-1)x le b`, then:

A

`a=0, b=pi `

B

`a=0, b=(pi)/(2)`

C

`a=(pi)/(2), b =pi`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

If alpha le sin^(-1)x+cos^(-1)x +tan^(-1)xlebeta then find the value of alpha and beta

solve sin^(-1) x le cos^(-1) x

The value of cos(sin^(-1)x + cos^(-1)x) , where |x| le 1 , is

If 0 le x le 1 then cos^(-1)(2x^(2)-1) equals

If 0 le x le 1 then cos^(-1)(2x^(2)-1) equals

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

Find the greatest and least values of the function f(x)=(sin^(-1)x)^3+(cos^(-1)x)^3,-1 le x le 1

It is given that A=(tan^(-1)x)^(3)+(cot^(-1)x)^(3) where x gt 0 and B=(cos^(-1)t)^(2)+(sin^(-1)t)^(2) where t in [0, (1)/(sqrt(2))] , and sin^(-1)x+cos^(-1)x=(pi)/(2) for -1 le x le 1 and tan^(-1)x +cot^(-1)x=(pi)/(2) for x in R . The maximum value of B is :

It is given that A=(tan^(-1)x)^(3)+(cot^(-1)x)^(3) where x gt 0 and B=(cos^(-1)t)^(2)+(sin^(-1)t)^(2) where t in [0, (1)/(sqrt(2))] , and sin^(-1)x+cos^(-1)x=(pi)/(2) for -1 le x le 1 and tan^(-1)x +cot^(-1)x=(pi)/(2) for x in R . The interval in which A lies is :

If 0 le x le (pi)/(2) and sin^(2)x=a and cos^(2)x=b , then sin 2x+cos 2x=