Home
Class 12
MATHS
The value of cos(2cos^(-1)0.8) is...

The value of `cos(2cos^(-1)0.8)` is

A

0.48

B

0.96

C

0.6

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

The value of cos(1/2cos^(-1)(1/8)) is (a) 3/4 (b) -3/4 (c) 1/(16) (d) 1/4

The value of cos (1/2 cos^(-1) . 1/8) is equal to

Write the value of cos^2(1/2cos^(-1)3/5)

If sinx+sin^2x=1 , then find the value of cos^(12)x +3cos^(10)x + 3 cos^8x + cos^6x-1

If sinx+sin^2x=1 , then find the value of cos^(12)x +3cos^(10)x + 3 cos^8x + cos^6x-2

Write the value of cos^2(1/2cos^(-1)(3/5))

The value of cos[1/2 cos^(-1){cos(sin^(-1)((sqrt63)/(8)))}] is

If sinA+sin^2A=1, then the value of cos^2A+cos^4A is

The value of cos[1/2cos^(-1)(cos(-(14pi)/5))]\ is/are a. cos(-(7pi)/5) b. sin(pi/(10)) c. cos((2pi)/5)\ d. -cos((3pi)/5)

If a=int_(0)^(1)(cos(sinx))/(secx)dx, then the value of a^(2)+cos^(2)(sin1) is equal to