Home
Class 12
MATHS
If tan^(-1)x+tan^(-1)y=(pi)/(4), then co...

If `tan^(-1)x+tan^(-1)y=(pi)/(4)`, then `cot^(-1)x+cot^(-1)y=`

A

`(pi)/(2)`

B

`(3pi)/(4)`

C

`pi`

D

`(5pi)/(4) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \tan^{-1} x + \tan^{-1} y = \frac{\pi}{4} \] ### Step 1: Use the identity for the sum of inverse tangents We know that: \[ \tan^{-1} x + \tan^{-1} y = \tan^{-1} \left( \frac{x+y}{1-xy} \right) \] This holds true when \( xy < 1 \). Since we have: \[ \tan^{-1} x + \tan^{-1} y = \frac{\pi}{4} \] This implies: \[ \tan \left( \tan^{-1} x + \tan^{-1} y \right) = \tan \left( \frac{\pi}{4} \right) = 1 \] ### Step 2: Set up the equation From the tangent addition formula, we can set up the equation: \[ \frac{x+y}{1-xy} = 1 \] ### Step 3: Cross-multiply to eliminate the fraction Cross-multiplying gives us: \[ x + y = 1 - xy \] ### Step 4: Rearranging the equation Rearranging the equation, we get: \[ x + y + xy = 1 \] ### Step 5: Use the identity for cotangent We know that: \[ \cot^{-1} x + \cot^{-1} y = \frac{\pi}{2} - \left( \tan^{-1} x + \tan^{-1} y \right) \] ### Step 6: Substitute the known value Substituting the known value of \( \tan^{-1} x + \tan^{-1} y \): \[ \cot^{-1} x + \cot^{-1} y = \frac{\pi}{2} - \frac{\pi}{4} \] ### Step 7: Simplify the expression This simplifies to: \[ \cot^{-1} x + \cot^{-1} y = \frac{\pi}{4} \] ### Final Answer Thus, we conclude that: \[ \cot^{-1} x + \cot^{-1} y = \frac{3\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1) x + tan^(-1) y = (4pi)/(5) , then cot^(-1) x + cot^(-1) y equal to

If tan^(-1)x+tan^(-1)y=(4pi)/5, find cot^(-1)x+cot^(-1)ydot

If tan^(-1)x+tan^(-1)y=(4pi)/5, find cot^(-1)x+cot^(-1)ydot

If tan^(-1)x+2cot^(-1)x=(2pi)/(3) then x =

If cot^(-1)x+tan^(-1)(1/2)=pi/4 then x is

If tan^(-1)x+2cot^(-1)x=(5pi)/6 , then find x.

If 3tan^(-1)x +cot^(-1)x=pi , then x equals to

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

The solution set of inequality ( cot^(-1) x) (tan^(-1) x) + (2 - pi/2) cot^(-1) x - 3 tan^(-1) x - 3 ( 2 - pi/2) gt 0 , is

If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y . Then which of the following may be true (a) (x+y)/(tan1)=-2 (b) (tan^(-1)x)/(1-tan^(-1)y)=2 (c) (tan^(-1)x)/(1-tan^(-1)y)=2 (d) (x+y)/(cot1)=1