Home
Class 12
MATHS
The domain of the function f(x)= sqrt(s...

The domain of the function `f(x)= sqrt(sin^(-1)x-(pi)/(4))+log(1-x)` is :

A

`x in [(1)/(sqrt(2)), 1]`

B

`x in ((1)/(sqrt(2)), 1]`

C

`x in [(1)/(sqrt(2)), 1)`

D

`x in ((1)/(sqrt(2)),1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \sqrt{\sin^{-1}(x) - \frac{\pi}{4}} + \log(1 - x) \), we need to ensure that both components of the function are defined and valid. ### Step 1: Determine the domain of \( \sin^{-1}(x) \) The inverse sine function \( \sin^{-1}(x) \) is defined for \( x \) in the interval \([-1, 1]\). Therefore, we have: \[ -1 \leq x \leq 1 \] ### Step 2: Ensure the expression inside the square root is non-negative For the square root to be defined, the expression inside it must be non-negative: \[ \sin^{-1}(x) - \frac{\pi}{4} \geq 0 \] This simplifies to: \[ \sin^{-1}(x) \geq \frac{\pi}{4} \] Since \( \sin^{-1}(x) \) is an increasing function, we can take the sine of both sides: \[ x \geq \sin\left(\frac{\pi}{4}\right) \] Calculating \( \sin\left(\frac{\pi}{4}\right) \): \[ \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \quad \text{(or } \frac{\sqrt{2}}{2} \text{)} \] Thus, we have: \[ x \geq \frac{1}{\sqrt{2}} \quad \text{(or } x \geq 0.7071 \text{)} \] ### Step 3: Determine the domain of the logarithm function The logarithm \( \log(1 - x) \) is defined when its argument is positive: \[ 1 - x > 0 \implies x < 1 \] ### Step 4: Combine the conditions Now we combine the conditions: 1. From \( \sin^{-1}(x) \): \( x \geq \frac{1}{\sqrt{2}} \) 2. From \( \log(1 - x) \): \( x < 1 \) Thus, the combined domain is: \[ \frac{1}{\sqrt{2}} \leq x < 1 \] ### Final Domain The domain of the function \( f(x) \) is: \[ x \in \left[\frac{1}{\sqrt{2}}, 1\right) \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=sqrt(sin x-1) is

The domain of the function f(x)=sqrt(cos^(- 1)((1-|x|)/2)) is

The natural domain of the function f(x)=sqrt(sin^(-1)(2x)+(pi)/(3)) is

Find the domain of the function f(x)=sin^(-1)sqrt(x-1)

Find the domain of the function f(x)=sin^(-1)sqrt(x-1)

The domain of the function f(x)=sqrt(log((1)/(|sinx|)))

The domain of the function f(x)=sqrt(x-sqrt(1-x^2)) is

The domain of the function f(x)=sin^(-1)log_(3)(x/3)) is

The domain of the function f(x)=(sin^(-1)(3-x))/(log_(e)(|-x|-2)) , is

Find the domain of the function: f(x)=sin^(-1)(|x-1|-2)