Home
Class 12
MATHS
tan^(-1)((1)/(4))+tan^(-1)((2)/(9)) is e...

`tan^(-1)((1)/(4))+tan^(-1)((2)/(9))` is equal to :

A

`(1)/(2) cos^(-1)((3)/(5))`

B

`(1)/(2) sin^(-1)((3)/(5))`

C

`(1)/(2) tan^(-1)((3)/(5))`

D

`tan^(-1)((1)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right) \), we can use the formula for the sum of two inverse tangent functions: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x + y}{1 - xy}\right) \] This formula is valid when \( xy < 1 \). ### Step 1: Identify \( x \) and \( y \) Let: - \( x = \frac{1}{4} \) - \( y = \frac{2}{9} \) ### Step 2: Check the condition \( xy < 1 \) Calculate \( xy \): \[ xy = \left(\frac{1}{4}\right) \left(\frac{2}{9}\right) = \frac{2}{36} = \frac{1}{18} \] Since \( \frac{1}{18} < 1 \), we can apply the formula. ### Step 3: Apply the formula Now, we can apply the formula: \[ \tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right) = \tan^{-1}\left(\frac{\frac{1}{4} + \frac{2}{9}}{1 - \frac{1}{4} \cdot \frac{2}{9}}\right) \] ### Step 4: Calculate the numerator Calculate \( \frac{1}{4} + \frac{2}{9} \): To add these fractions, find a common denominator: - The least common multiple of 4 and 9 is 36. Convert each fraction: \[ \frac{1}{4} = \frac{9}{36}, \quad \frac{2}{9} = \frac{8}{36} \] Now add them: \[ \frac{1}{4} + \frac{2}{9} = \frac{9}{36} + \frac{8}{36} = \frac{17}{36} \] ### Step 5: Calculate the denominator Calculate \( 1 - xy \): \[ 1 - xy = 1 - \frac{1}{18} = \frac{18}{18} - \frac{1}{18} = \frac{17}{18} \] ### Step 6: Combine the results Now substitute the results back into the formula: \[ \tan^{-1}\left(\frac{\frac{17}{36}}{\frac{17}{18}}\right) \] ### Step 7: Simplify the fraction Simplifying the fraction: \[ \frac{\frac{17}{36}}{\frac{17}{18}} = \frac{17}{36} \cdot \frac{18}{17} = \frac{18}{36} = \frac{1}{2} \] ### Final Result Thus, we have: \[ \tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right) = \tan^{-1}\left(\frac{1}{2}\right) \] ### Conclusion The final answer is: \[ \tan^{-1}\left(\frac{1}{2}\right) \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

1/2tan^(- 1)(12/5) is equal to

2 tan^(-1) (-2) is equal to

4 tan^(-1)(1/5)-tan^(-1)(1/239) is equal to

tan^(-1)(1/2)+tan^(-1)(1/3) is equal to

The sum of the infinite terms of the series "tan"^(-1)((1)/(3))+ "tan"^(-1)((2)/(9)) + tan^(-1)((4)/(33)) + .... is equal to (pi)/(n) The value of n is:

Show that : "tan"^(-1)(1)/(4) +"tan"^(-1)(2)/(9) = (1)/(2) "cos"^(-1)(3)/(5) .

Prove that tan ^(-1) ""(1)/(4) + tan ^(-1) ""(2)/(9) = cos ^(-1) ((2)/(sqrt5))

The value of tan^(-1).(4)/(7) + tan^(-1).(4)/(19) + tan^(-1).(4)/(39) + tan^(-1).(4)/(67) ... oo equals

The value of tan^(-1).(4)/(7) + tan^(-1).(4)/(19) + tan^(-1).(4)/(39) + tan^(-1).(4)/(67) ... oo equals

cos(tan^(-1)3/4)+cos(tan^(-1)x) is equal to