Home
Class 12
MATHS
tan^(-1)n ,tan^(-1)(n+1) and tan^(-1)(n+...

`tan^(-1)n ,tan^(-1)(n+1)` and `tan^(-1)(n+2),n in N ,` are the angles of a triangle if `n=` 1 (b) 2 (c) 3 (d) None of these

A

`-1`

B

1

C

2

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( n \) such that \( \tan^{-1}(n) \), \( \tan^{-1}(n+1) \), and \( \tan^{-1}(n+2) \) are the angles of a triangle, we need to use the property that the sum of the angles in a triangle is \( 180^\circ \) or \( \pi \) radians. ### Step-by-step Solution: 1. **Set up the equation**: We know that the sum of the angles must equal \( \pi \): \[ \tan^{-1}(n) + \tan^{-1}(n+1) + \tan^{-1}(n+2) = \pi \] 2. **Rearrange the equation**: We can rearrange this to isolate \( \tan^{-1}(n) \): \[ \tan^{-1}(n+1) + \tan^{-1}(n+2) = \pi - \tan^{-1}(n) \] 3. **Use the tangent addition formula**: We know that: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a+b}{1-ab}\right) \quad \text{if } ab < 1 \] Applying this to our equation: \[ \tan^{-1}(n+1) + \tan^{-1}(n+2) = \tan^{-1}\left(\frac{(n+1)+(n+2)}{1-(n+1)(n+2)}\right) \] This simplifies to: \[ \tan^{-1}\left(\frac{2n + 3}{1 - (n^2 + 3n + 2)}\right) \] 4. **Set the two expressions equal**: Now we have: \[ \tan^{-1}\left(\frac{2n + 3}{1 - (n^2 + 3n + 2)}\right) = \tan^{-1}(-n) \] This implies: \[ \frac{2n + 3}{1 - (n^2 + 3n + 2)} = -n \] 5. **Cross-multiply to eliminate the tangent**: Cross-multiplying gives: \[ 2n + 3 = -n(1 - (n^2 + 3n + 2)) \] Expanding the right side: \[ 2n + 3 = -n + n^3 + 3n^2 + 2n \] 6. **Rearranging the equation**: Combine like terms: \[ 0 = n^3 + 3n^2 + 5n + 3 \] 7. **Finding the roots**: We need to solve the cubic equation \( n^3 + 3n^2 + 5n + 3 = 0 \). By trying \( n = -1 \): \[ (-1)^3 + 3(-1)^2 + 5(-1) + 3 = -1 + 3 - 5 + 3 = 0 \] Thus, \( n = -1 \) is a root. 8. **Conclusion**: Since \( n \) must be a natural number, and the only real root we found is \( n = -1 \), which is not in \( \mathbb{N} \), we conclude that there are no natural number solutions. ### Final Answer: The value of \( n \) is **None of these**.
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

If n is a whole number such that n+n=n ,\ t h e n\ n=? (a) 1 (b) 2 (c) 3 (d) none of these

Let I_(n) = int_(0)^(1)x^(n)(tan^(1)x)dx, n in N , then

If two angles of a triangle are tan^(-1)(2)a n dtan^(-1)(3), then find the third angle.

Prove that: tan^(-1)(m/n)+tan^(-1)((n-m)/(n+m))=pi/4

If A=[(1,1),(1,0)] and n epsilon N then A^n is equal to (A) 2^(n-1)A (B) 2^nA (C) nA (D) none of these

If (1+t a n1^0). (1+t a n2^0) .(1+t a n3^0)......(1+tan45^0)=2^n , then ' n ' is equal to 16 b. 23 c. 3 0 d. none of these

The number of terms in the expansion of (x+1/x+1)^n is (A) 2n (B) 2n+1 (C) 2n-1 (D) none of these

Find sum of sum_(r=1)^n r . C (2n,r) (a) n*2^(2n-1) (b) 2^(2n-1) (c) 2^(n-1)+1 (d) None of these

The value of sum_(r=1)^(n+1)(sum_(k=1)^n "^k C_(r-1)) ( where r ,k ,n in N) is equal to a. 2^(n+1)-2 b. 2^(n+1)-1 c. 2^(n+1) d. none of these

lim_(n to oo)sum_(r=1)^(n)cot^(-1)(r^(2)+3//4) is (a) 0 (b) tan^(-1)1 (c) tan^(-1)2 (d) None of these