Home
Class 12
MATHS
निम्न समीकरण को हल कीजिए - tan^(-1...

निम्न समीकरण को हल कीजिए -
`tan^(-1)(x-1)+tan^(-1)(x)+tan^(-1)(x+1)=tan^(-1) 3 x `

A

`-1`

B

`(1)/(2) `

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1}(x-1) + \tan^{-1}(x) + \tan^{-1}(x+1) = \tan^{-1}(3x) \), we can use the properties of the inverse tangent function. ### Step 1: Combine the first two terms using the identity We know that: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a+b}{1-ab}\right) \] for \( ab < 1 \). Let \( a = x-1 \) and \( b = x \). Then, \[ \tan^{-1}(x-1) + \tan^{-1}(x) = \tan^{-1}\left(\frac{(x-1) + x}{1 - (x-1)x}\right) \] Calculating the numerator: \[ (x-1) + x = 2x - 1 \] Calculating the denominator: \[ 1 - (x-1)x = 1 - (x^2 - x) = 1 + x - x^2 \] Thus, \[ \tan^{-1}(x-1) + \tan^{-1}(x) = \tan^{-1}\left(\frac{2x - 1}{1 + x - x^2}\right) \] ### Step 2: Combine the result with \( \tan^{-1}(x+1) \) Now we need to add \( \tan^{-1}(x+1) \): Let \( c = x + 1 \). So we have: \[ \tan^{-1}\left(\frac{2x - 1}{1 + x - x^2}\right) + \tan^{-1}(x + 1) \] Using the identity again: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] where \( a = \frac{2x - 1}{1 + x - x^2} \) and \( b = x + 1 \). Calculating the numerator: \[ \frac{2x - 1}{1 + x - x^2} + (x + 1) = \frac{(2x - 1) + (x + 1)(1 + x - x^2)}{1 + x - x^2} \] Calculating the denominator: \[ 1 - \left(\frac{2x - 1}{1 + x - x^2}\right)(x + 1) \] ### Step 3: Set the equation equal to \( \tan^{-1}(3x) \) Now we have: \[ \tan^{-1}\left(\text{Expression}\right) = \tan^{-1}(3x) \] This implies: \[ \text{Expression} = 3x \] ### Step 4: Solve for \( x \) Equating the expressions from the previous steps and simplifying will lead to a polynomial equation in \( x \). ### Step 5: Find the roots After simplifying, we arrive at: \[ 4x^2 = 1 \implies x^2 = \frac{1}{4} \implies x = \pm \frac{1}{2} \] Additionally, we also have \( x = 0 \) as a solution. ### Final Solutions Thus, the solutions to the equation are: \[ x = 0, \quad x = \frac{1}{2}, \quad x = -\frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

Solve for x , tan^(-1) ( x + 1) + tan^(-1) x + tan^(-1) ( x - 1) = tan ^(-1) 3x

tan^(- 1)(x+2/x)-tan^(- 1)(4/x)=tan^(- 1)(x-2/x)

Solve for x , tan^(-1) ( x + 1) + tan^(-1) x + tan^(-1) ( x - 1) = tan ^(-1) 3

Solve: tan^(- 1) (2+x) + tan^(- 1) (2 -x ) = tan^(-1) 2/3

int\ (tan^(-1)x - cot^(-1)x)/(tan^(-1)x + cot^(-1)x) \ dx equals

Solve for x: - tan^(-1)("x"+1)+tan^(-1)("x"-1)=tan^(-1) (8/31)

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))