Home
Class 12
MATHS
If A=tan^-1((xsqrt3)/(2k-x)) and B=tan^-...

If A=`tan^-1((xsqrt3)/(2k-x))` and B=`tan^-1((2x-k)/(ksqrt3))` then find the value of `A-B` (A) `0^@` (B) `30^@` (C) `60^@` (D) `45^@`

A

`0^(@)`

B

`45^(@)`

C

`60^(@)`

D

`30^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( A - B \) where: \[ A = \tan^{-1}\left(\frac{x \sqrt{3}}{2k - x}\right) \] \[ B = \tan^{-1}\left(\frac{2x - k}{k \sqrt{3}}\right) \] ### Step 1: Use the formula for the difference of inverse tangents We can use the formula for the difference of two inverse tangents: \[ \tan^{-1}(x) - \tan^{-1}(y) = \tan^{-1}\left(\frac{x - y}{1 + xy}\right) \] In our case, let: - \( x = \frac{x \sqrt{3}}{2k - x} \) - \( y = \frac{2x - k}{k \sqrt{3}} \) Thus, we can write: \[ A - B = \tan^{-1}\left(\frac{x \sqrt{3}}{2k - x} - \frac{2x - k}{k \sqrt{3}} \bigg/ \left(1 + \frac{x \sqrt{3}}{2k - x} \cdot \frac{2x - k}{k \sqrt{3}}\right)\right) \] ### Step 2: Simplify the numerator The numerator becomes: \[ \frac{x \sqrt{3}}{2k - x} - \frac{2x - k}{k \sqrt{3}} = \frac{x \sqrt{3} \cdot k \sqrt{3} - (2x - k)(2k - x)}{(2k - x)(k \sqrt{3})} \] Expanding the numerator: \[ = \frac{3kx - (4kx - 2k^2 - 2x^2 + kx)}{(2k - x)(k \sqrt{3})} \] \[ = \frac{3kx - 4kx + 2k^2 + 2x^2 - kx}{(2k - x)(k \sqrt{3})} \] \[ = \frac{-2kx + 2k^2 + 2x^2}{(2k - x)(k \sqrt{3})} \] ### Step 3: Simplify the denominator Now, we simplify the denominator: \[ 1 + \frac{x \sqrt{3}}{2k - x} \cdot \frac{2x - k}{k \sqrt{3}} = 1 + \frac{x(2x - k)}{(2k - x)k} \] \[ = \frac{(2k - x)k + x(2x - k)}{(2k - x)k} \] \[ = \frac{2k^2 - kx + 2x^2 - kx}{(2k - x)k} \] \[ = \frac{2k^2 + 2x^2 - 2kx}{(2k - x)k} \] ### Step 4: Combine the results Now we can combine the numerator and denominator: \[ A - B = \tan^{-1}\left(\frac{-2kx + 2k^2 + 2x^2}{2k^2 + 2x^2 - 2kx}\right) \] ### Step 5: Factor out common terms Both the numerator and denominator can be simplified: \[ = \tan^{-1}\left(\frac{2(k^2 + x^2 - kx)}{2(k^2 + x^2 - kx)}\right) = \tan^{-1}(1) \] ### Step 6: Find the angle Since \( \tan^{-1}(1) = 45^\circ \): Thus, we conclude that: \[ A - B = 45^\circ \] ### Final Answer The value of \( A - B \) is \( 45^\circ \).
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

If tan^(-1) ((x+1)/(x-1))+tan^(-1)((x-1)/x)=tan^(-1)(-7) , then the value of x is (a) 0 (b) -2 (c) 1 (d) 2

If tan(A+B)=sqrt(3)andsin(A-B)=(1)/(2) ,then find the value of tan (2A-3B) .

If tan A = (a)/(a + 1) and tan B = (1)/(2a + 1) , then find the value of A + B.

If tan(A+B)=x and tan(A-B)=y then find the values of tan2A and tan2B

If int tan^(2) kx dx= (tan 3x)/(3)-x + C , find the value of k

If d/(dx)(tan^(-1)(2^(x+1)/(1-4^(x))))=a^(x+1)/(1+b^(x))loga , find the value of a and b.

In Figure, if A B||C D , then the value of x is (a) 20^0 (b) 30^0 (c) 45^0 (d) 60^0

If 3tan^(-1)(1/(2+sqrt(3)))-tan^(-1)1/x=tan^(-1)1/3, then x is equal to 1 (b) 2 (c) 3 (d) sqrt(2)

In Figure, if l_1 || l_2, the value of x is (a) 22 1/2 (b) 30 (c) 45 (d) 60

If (3-tan^2(pi/7))/(1-tan^2(pi/7))=kcos(pi/7) then the value of k is (a)1 (b) 2 (c) 3 (d) 4