Home
Class 12
MATHS
Solve sin^(-1) x + sin^(-1) (1 - x) = co...

Solve `sin^(-1) x + sin^(-1) (1 - x) = cos^(-1) x`

A

1, -1

B

1, 0

C

`0, (1)/(2)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

Solve sin^(-1)x > -1

solve sin^(-1) x le cos^(-1) x

Solve : sin^(-1)( x) + sin^(-1)( 2x) = sin^(-1)(sqrt(3)/2) .

Solve the following equation: sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x

Solve the following equation: sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x

Solve the equation of x:sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x

Solve the equation of x:sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x

Solve the equation for x: sin^(-1) x+sin^(-1) (1-x)=cos^(-1) x, x ne 0

Solve sin^(-1) x - cos^(-1) x = cos ^(-1)(sqrt3/2) .

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1