Home
Class 12
MATHS
tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(...

`tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))`

A

`(pi)/(4)-(1)/(2) cos^(-1)x`

B

`(pi)/(4) +cos^(-1)x^(2) `

C

`(pi)/(4) +(1)/(2) cos^(-1)x^(2)`

D

`(pi)/(4) - (1)/(2) cos^(-1)x^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan^{-1}\left(\frac{\sqrt{1+x^2} + \sqrt{1-x^2}}{\sqrt{1+x^2} - \sqrt{1-x^2}}\right) \), we will follow these steps: ### Step 1: Substitute \( x^2 \) Let \( x^2 = \cos(2\theta) \). Then, we can express \( \sqrt{1+x^2} \) and \( \sqrt{1-x^2} \) in terms of \( \theta \). ### Step 2: Simplify \( \sqrt{1+x^2} \) Using the identity \( 1 + \cos(2\theta) = 2\cos^2(\theta) \): \[ \sqrt{1+x^2} = \sqrt{1 + \cos(2\theta)} = \sqrt{2\cos^2(\theta)} = \sqrt{2} \cos(\theta) \] ### Step 3: Simplify \( \sqrt{1-x^2} \) Using the identity \( 1 - \cos(2\theta) = 2\sin^2(\theta) \): \[ \sqrt{1-x^2} = \sqrt{1 - \cos(2\theta)} = \sqrt{2\sin^2(\theta)} = \sqrt{2} \sin(\theta) \] ### Step 4: Substitute back into the expression Now, substitute these values back into the original expression: \[ \tan^{-1}\left(\frac{\sqrt{2}\cos(\theta) + \sqrt{2}\sin(\theta)}{\sqrt{2}\cos(\theta) - \sqrt{2}\sin(\theta)}\right) \] ### Step 5: Factor out \( \sqrt{2} \) Factoring out \( \sqrt{2} \) from the numerator and the denominator: \[ = \tan^{-1}\left(\frac{\sqrt{2}(\cos(\theta) + \sin(\theta))}{\sqrt{2}(\cos(\theta) - \sin(\theta))}\right) \] This simplifies to: \[ = \tan^{-1}\left(\frac{\cos(\theta) + \sin(\theta)}{\cos(\theta) - \sin(\theta)}\right) \] ### Step 6: Use the tangent addition formula We can rewrite this as: \[ = \tan^{-1\left(\frac{1 + \tan(\theta)}{1 - \tan(\theta)}\right) \] This is equivalent to \( \tan\left(\frac{\pi}{4} + \theta\right) \). ### Step 7: Solve for \( \theta \) Since \( x^2 = \cos(2\theta) \), we have: \[ 2\theta = \cos^{-1}(x) \quad \Rightarrow \quad \theta = \frac{1}{2} \cos^{-1}(x) \] ### Step 8: Substitute back to find the final answer Substituting \( \theta \) back, we get: \[ \tan^{-1}\left(\frac{\cos(\theta) + \sin(\theta)}{\cos(\theta) - \sin(\theta)}\right) = \frac{\pi}{4} + \frac{1}{2} \cos^{-1}(x) \] Thus, the final answer is: \[ \frac{\pi}{4} + \frac{1}{2} \cos^{-1}(x) \] ### Conclusion The expression simplifies to: \[ \frac{\pi}{4} + \frac{1}{2} \cos^{-1}(x) \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

int(sqrt(1-x^(2))+sqrt(1+x^(2)))/(sqrt(1-x^(4)))dx=

Evaluate the following limits : Lim_(x to 0 ) (sqrt(1+x)-sqrt(1+x^(2)))/(sqrt(1-x^(2))-sqrt(1-x))

Differentiate w.r.t 'x' f(x) = (sqrt(x^(2)+1)+sqrt(x^(2)-1))/(sqrt(x^(2)+1)-sqrt(x^(2)-1))

Prove that tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)-sqrt(1-x)))=pi/4-1/2cos^(-1),-1/(sqrt(2))lt=xlt=1

d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^2)))]= 1/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) (-1)/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2))+1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2)) 0 b. 1//4 c. -1//4 d. none of these

int(sqrt(1-x^(2))+1)/(sqrt(1-x)+1/sqrt(1+x))dx

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y=tan^(-1)(x/(1+sqrt(1-x^2)))