Home
Class 12
MATHS
If cos^(-1)((x)/(3))+cos^(-1)((y)/(2))=(...

If `cos^(-1)((x)/(3))+cos^(-1)((y)/(2))=(theta)/(2)`, then the value of `4x^(2)-12xy cos((theta)/(2))+9y^(2)` is equal to :

A

`18(1+cos theta)`

B

`18(1-cos theta)`

C

`36(1+cos theta)`

D

`36(1-cos theta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equation: \[ \cos^{-1}\left(\frac{x}{3}\right) + \cos^{-1}\left(\frac{y}{2}\right) = \frac{\theta}{2} \] ### Step 1: Use the formula for the sum of inverse cosines We can use the formula: \[ \cos^{-1}(a) + \cos^{-1}(b) = \cos^{-1}(ab - \sqrt{(1-a^2)(1-b^2)}) \] In our case, \(a = \frac{x}{3}\) and \(b = \frac{y}{2}\). Thus, we have: \[ \cos^{-1}\left(\frac{x}{3}\right) + \cos^{-1}\left(\frac{y}{2}\right) = \cos^{-1}\left(\frac{xy}{6} - \sqrt{\left(1 - \left(\frac{x}{3}\right)^2\right)\left(1 - \left(\frac{y}{2}\right)^2\right)}\right) \] ### Step 2: Set the equation equal to \(\frac{\theta}{2}\) From the previous step, we equate: \[ \frac{xy}{6} - \sqrt{\left(1 - \left(\frac{x}{3}\right)^2\right)\left(1 - \left(\frac{y}{2}\right)^2\right)} = \cos\left(\frac{\theta}{2}\right) \] ### Step 3: Isolate the square root Rearranging gives: \[ \sqrt{\left(1 - \left(\frac{x}{3}\right)^2\right)\left(1 - \left(\frac{y}{2}\right)^2\right)} = \frac{xy}{6} - \cos\left(\frac{\theta}{2}\right) \] ### Step 4: Square both sides Squaring both sides results in: \[ \left(1 - \left(\frac{x}{3}\right)^2\right)\left(1 - \left(\frac{y}{2}\right)^2\right) = \left(\frac{xy}{6} - \cos\left(\frac{\theta}{2}\right)\right)^2 \] ### Step 5: Expand both sides Expanding the left side: \[ 1 - \frac{x^2}{9} - \frac{y^2}{4} + \frac{x^2y^2}{36} \] And the right side: \[ \left(\frac{xy}{6}\right)^2 - 2\cdot\frac{xy}{6}\cdot\cos\left(\frac{\theta}{2}\right) + \cos^2\left(\frac{\theta}{2}\right) \] ### Step 6: Rearranging and simplifying Combine all terms to one side: \[ 1 - \frac{x^2}{9} - \frac{y^2}{4} + \frac{x^2y^2}{36} - \left(\frac{x^2y^2}{36} - \frac{xy}{3}\cos\left(\frac{\theta}{2}\right) + \cos^2\left(\frac{\theta}{2}\right)\right) = 0 \] ### Step 7: Collect like terms This leads us to: \[ 4x^2 + 9y^2 - 12xy\cos\left(\frac{\theta}{2}\right) + 36\cos^2\left(\frac{\theta}{2}\right) - 36 = 0 \] ### Step 8: Final expression Rearranging gives: \[ 4x^2 + 9y^2 - 12xy\cos\left(\frac{\theta}{2}\right) = 36(1 - \cos^2\left(\frac{\theta}{2}\right)) \] Using the identity \(1 - \cos^2\left(\frac{\theta}{2}\right) = \sin^2\left(\frac{\theta}{2}\right)\): \[ 4x^2 + 9y^2 - 12xy\cos\left(\frac{\theta}{2}\right) = 36\sin^2\left(\frac{\theta}{2}\right) \] ### Conclusion Thus, the value of \(4x^2 - 12xy\cos\left(\frac{\theta}{2}\right) + 9y^2\) is equal to \(36\sin^2\left(\frac{\theta}{2}\right)\). ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

If cos^(-1)(x)/(2)+cos^(-1)(y)/(3)=theta then the maximum of 9x^(2)-12xy costheta + 4y^(2) is

If "cos"^(-1) x/(2)+"cos"^(-1) y/(3)=theta , then prove that 9x^(2)-12xy " cos "theta+4y^(2)=36" sin "^(2)theta

If cos ^(-1) ""(x)/(2) + cos ^(-1) "" (y)/(3) = theta, then prove that 9x ^(2) - 12 xy cos theta + 4y ^(2) = 36 sin ^(2) theta

If cos ^(-1) .(x)/(a)+ cos ^(-1). (y)/(b) = theta then prove that (x^(2))/(a^(2)) -(2xy)/(ab) . cos theta+ (y^(2))/(b^(2)) = sin ^(2) theta .

If cos^(-1)(x/2)+cos^(-1)(y/3) = theta , prove that 9x^2- 12xycostheta+ 4y^2= 36 sin^(2)theta

If cos ^(-1)\ (x)/(a) + cos^(-1)\ (y)/(b) = theta , then (x^(2))/(a^(2)) +(y^(2))/(b^(2))=?

If 2x-3y=5 , what is the value of 4x^(2)-12xy+9y^(2) ?

If cos^(-1).(x)/(2) + cos^(-1).(y)/(3) = (pi)/(6) , then prove that (x^(2))/(4) - (xy)/(2sqrt3) + (y^(2))/(9) = (1)/(4)

Minimum value of 4x^2-4x|sin theta|-cos^2 theta is equal

If cos^(-1) . x/a - sin^(-1). y/b = theta (a , b , ne 0) , then the maximum value of b^(2) x^(2) + a^(2) y^(2) + 2ab xy sin theta equals