Home
Class 12
MATHS
The formula "cos"^(-1)(1-x^(2))/(1+x^(2)...

The formula `"cos"^(-1)(1-x^(2))/(1+x^(2))=2tan^(-1)x` holds only for :

A

`x in R`

B

`|x| le 1`

C

`x in (-1, 1)`

D

`x in [0, +oo]`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the conditions under which the formula \[ \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) = 2 \tan^{-1}(x) \] holds, we will follow these steps: ### Step 1: Set up the equation We start with the left-hand side (LHS) and right-hand side (RHS) of the equation: \[ \text{LHS} = \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) \] \[ \text{RHS} = 2 \tan^{-1}(x) \] ### Step 2: Substitute \( x = \tan(\theta) \) To simplify the LHS, we substitute \( x \) with \( \tan(\theta) \): \[ \text{LHS} = \cos^{-1}\left(\frac{1 - \tan^2(\theta)}{1 + \tan^2(\theta)}\right) \] ### Step 3: Use the trigonometric identity Recall the identity: \[ \cos(2\theta) = \frac{1 - \tan^2(\theta)}{1 + \tan^2(\theta)} \] Thus, we can rewrite the LHS: \[ \text{LHS} = \cos^{-1}(\cos(2\theta)) = 2\theta \] ### Step 4: Relate \( \theta \) to \( x \) Since \( \theta = \tan^{-1}(x) \), we have: \[ \text{LHS} = 2 \tan^{-1}(x) \] This shows that the LHS equals the RHS, confirming that the formula holds. ### Step 5: Determine the conditions The equality \( \cos^{-1}(\cos(2\theta)) = 2\theta \) holds under certain conditions. Specifically, \( 2\theta \) must be in the range \( [0, \pi] \): \[ 0 \leq 2\theta \leq \pi \] This implies: \[ 0 \leq \theta \leq \frac{\pi}{2} \] ### Step 6: Convert back to \( x \) Since \( \theta = \tan^{-1}(x) \), we find: \[ 0 \leq \tan^{-1}(x) \leq \frac{\pi}{2} \] Taking the tangent of all parts gives: \[ 0 \leq x < \infty \] However, since we also need to consider the original expression \( \frac{1 - x^2}{1 + x^2} \) to ensure it remains valid, we also recognize that \( x \) must be within the bounds of the cosine function, specifically: \[ |x| \leq 1 \] ### Conclusion Thus, the formula holds for: \[ x \in [0, 1] \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

Solve for x :tan^(-1)((1-x)/(1+x))=1/2tan^(-1)x ,x >0

The relation tan^(-1)((1+x)/(1-x))=(pi)/(4)+tan^(-1)x holds true for all

If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x then

The set of values of x for which tan^(-1)(x)/sqrt(1-x^(2))=sin^(-1) x holds is

If f(x)=tan^(-1)x+cos^(-1)((1-x^(2))/(1+x^(2))) , then

Solve the equations. tan^(-1)((1-x)/(1+x))=1/2tan^(-1)x ,(x >0)

Solve the equations. tan^(-1)((1-x)/(1+x))=1/2tan^(-1)x ,(x >0)

Solve the equation tan^(-1)((1-x)/(1+x))=1/2tan^(-1)x ,(x >0)

Solve the equations. tan^(-1)(1-x)/(1+x)=1/2tan^(-1)x ,(x >0)

If x<0 , then write the value of cos^(-1)((1-x^2)/(1+x^2)) in terms of tan^(-1)x