Home
Class 12
MATHS
Find the value of cos( 2 cos^(-1) x +...

Find the value of
`cos( 2 cos^(-1) x + sin^(-1) x) " when " x = 1/5`

A

` (2 sqrt(6))/(5) `

B

`- (2 sqrt(6))/(5) `

C

` (3 sqrt(6))/(5) `

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cos(2 \cos^{-1} x + \sin^{-1} x) \) when \( x = \frac{1}{5} \), we can follow these steps: ### Step 1: Substitute the value of \( x \) We start with the expression: \[ \cos(2 \cos^{-1} x + \sin^{-1} x) \] Substituting \( x = \frac{1}{5} \): \[ \cos(2 \cos^{-1} \frac{1}{5} + \sin^{-1} \frac{1}{5}) \] ### Step 2: Use the identity for \( \sin^{-1} x \) and \( \cos^{-1} x \) We know that: \[ \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \] Thus, we can express \( \sin^{-1} \frac{1}{5} \) in terms of \( \cos^{-1} \frac{1}{5} \): \[ \sin^{-1} \frac{1}{5} = \frac{\pi}{2} - \cos^{-1} \frac{1}{5} \] ### Step 3: Substitute back into the expression Now substituting this back into our expression: \[ \cos(2 \cos^{-1} \frac{1}{5} + \left(\frac{\pi}{2} - \cos^{-1} \frac{1}{5}\right)) \] This simplifies to: \[ \cos\left(\cos^{-1} \frac{1}{5} + \frac{\pi}{2}\right) \] ### Step 4: Use the cosine addition formula Using the cosine addition formula: \[ \cos(a + b) = \cos a \cos b - \sin a \sin b \] where \( a = \cos^{-1} \frac{1}{5} \) and \( b = \frac{\pi}{2} \): \[ \cos\left(\cos^{-1} \frac{1}{5}\right) \cos\left(\frac{\pi}{2}\right) - \sin\left(\cos^{-1} \frac{1}{5}\right) \sin\left(\frac{\pi}{2}\right) \] Since \( \cos\left(\frac{\pi}{2}\right) = 0 \) and \( \sin\left(\frac{\pi}{2}\right) = 1 \), we have: \[ 0 - \sin\left(\cos^{-1} \frac{1}{5}\right) = -\sin\left(\cos^{-1} \frac{1}{5}\right) \] ### Step 5: Find \( \sin\left(\cos^{-1} \frac{1}{5}\right) \) Using the identity \( \sin(\cos^{-1} x) = \sqrt{1 - x^2} \): \[ \sin\left(\cos^{-1} \frac{1}{5}\right) = \sqrt{1 - \left(\frac{1}{5}\right)^2} = \sqrt{1 - \frac{1}{25}} = \sqrt{\frac{24}{25}} = \frac{\sqrt{24}}{5} \] Thus: \[ -\sin\left(\cos^{-1} \frac{1}{5}\right) = -\frac{\sqrt{24}}{5} \] ### Step 6: Simplify \( \sqrt{24} \) We can simplify \( \sqrt{24} \): \[ \sqrt{24} = \sqrt{4 \cdot 6} = 2\sqrt{6} \] So: \[ -\frac{\sqrt{24}}{5} = -\frac{2\sqrt{6}}{5} \] ### Final Answer Therefore, the value of \( \cos(2 \cos^{-1} x + \sin^{-1} x) \) when \( x = \frac{1}{5} \) is: \[ -\frac{2\sqrt{6}}{5} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

Find the value of : sin (sin^(-1) x + cos^(-1) x)

Evaluate : cos(2cos^(-1)x+sin^(-1)x)a tx=1/5

Find the value of, cos [tan^(-1) {sin (cot^(-1)x)}]

Evaluate: cos (2 cos ^(-1) x +sin ^(-1) x ) at x = (1)/(5).

Find the value of "cos"(2cos^(-1)x+sin^(-1)x) at x=1/5, where 0lt=pi and -pi/2lt=sin^(-1)xlt=pi/2dot

The value of cos(sin^(-1)x + cos^(-1)x) , where |x| le 1 , is

Evaluate : cos(2cos^(-1)x+sin^(-1)x) a t x=1/5

If x=(1)/(5) , the value of cos(cos^(-1)x+2sin^(-1)x) is :

Write the value of cos(sin^(-1)x+cos^(-1)x) , |x|lt=1 .

Find the value of x for which sin^(-1) (cos^(-1) x) lt 1 and cos^(-1) (cos^(-1) x) lt 1