Home
Class 12
MATHS
tan((pi)/(4) +(1)/(2)"cos"^(-1)(a)/(b))+...

` tan((pi)/(4) +(1)/(2)"cos"^(-1)(a)/(b))+ tan((pi)/(4) - (1)/(2)"cos"^(-1)(a)/(b)) ` is :

A

`(2a)/(b) `

B

` (a)/(b) `

C

` (b)/(a) `

D

`(2b)/(a) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan\left(\frac{\pi}{4} + \frac{1}{2} \cos^{-1}\left(\frac{a}{b}\right)\right) + \tan\left(\frac{\pi}{4} - \frac{1}{2} \cos^{-1}\left(\frac{a}{b}\right)\right) \), we can follow these steps: ### Step 1: Define the angle Let: \[ \theta = \frac{1}{2} \cos^{-1}\left(\frac{a}{b}\right) \] Now, we can rewrite the expression as: \[ \tan\left(\frac{\pi}{4} + \theta\right) + \tan\left(\frac{\pi}{4} - \theta\right) \] ### Step 2: Use the tangent addition and subtraction formulas Using the tangent addition formula: \[ \tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} \] and the tangent subtraction formula: \[ \tan(a - b) = \frac{\tan a - \tan b}{1 + \tan a \tan b} \] we can apply these to our expression. Since \( \tan\left(\frac{\pi}{4}\right) = 1 \), we have: \[ \tan\left(\frac{\pi}{4} + \theta\right) = \frac{1 + \tan \theta}{1 - 1 \cdot \tan \theta} = \frac{1 + \tan \theta}{1 - \tan \theta} \] \[ \tan\left(\frac{\pi}{4} - \theta\right) = \frac{1 - \tan \theta}{1 + 1 \cdot \tan \theta} = \frac{1 - \tan \theta}{1 + \tan \theta} \] ### Step 3: Combine the two expressions Now we can combine these two results: \[ \tan\left(\frac{\pi}{4} + \theta\right) + \tan\left(\frac{\pi}{4} - \theta\right) = \frac{1 + \tan \theta}{1 - \tan \theta} + \frac{1 - \tan \theta}{1 + \tan \theta} \] ### Step 4: Find a common denominator The common denominator for these two fractions is \( (1 - \tan \theta)(1 + \tan \theta) \): \[ = \frac{(1 + \tan \theta)^2 + (1 - \tan \theta)^2}{(1 - \tan \theta)(1 + \tan \theta)} \] ### Step 5: Simplify the numerator Now we simplify the numerator: \[ (1 + \tan \theta)^2 + (1 - \tan \theta)^2 = 1 + 2\tan \theta + \tan^2 \theta + 1 - 2\tan \theta + \tan^2 \theta = 2 + 2\tan^2 \theta \] ### Step 6: Simplify the denominator The denominator can be simplified as: \[ (1 - \tan \theta)(1 + \tan \theta) = 1 - \tan^2 \theta \] ### Step 7: Final expression Putting it all together, we have: \[ \tan\left(\frac{\pi}{4} + \theta\right) + \tan\left(\frac{\pi}{4} - \theta\right) = \frac{2 + 2\tan^2 \theta}{1 - \tan^2 \theta} \] Factoring out a 2 from the numerator gives: \[ = \frac{2(1 + \tan^2 \theta)}{1 - \tan^2 \theta} \] ### Step 8: Use the double angle identity for cosine We know that: \[ 1 + \tan^2 \theta = \sec^2 \theta \] and using the double angle identity for cosine: \[ \cos(2\theta) = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \] Thus, we can express the final answer as: \[ = \frac{2}{\cos(2\theta)} \] Substituting back \( \theta = \frac{1}{2} \cos^{-1}\left(\frac{a}{b}\right) \): \[ = \frac{2}{\cos\left(\cos^{-1}\left(\frac{a}{b}\right)\right)} = \frac{2b}{a} \] ### Final Answer The final result is: \[ \frac{2b}{a} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

Prove that : tan [(pi)/(4) + (1)/(2) cos^(-1)""(a)/(b)] + tan[(pi)/(4) - (1)/(2) cos^(-1)""(a)/(b)] = (2b)/(a) .

"sin^(2)(pi)/(6)+cos^(2)(pi)/(3)-tan^(2)(pi)/(4)=-(1)/(2)"

Prove that tan(pi/4+1/2 cos^-1(a/b))+tan(pi/4-1/2 cos^-1(a/b))=(2b)/a

Prove that tan(pi/4+1/2 cos^-1(a/b))+tan(pi/4-1/2 cos^-1(a/b))=(2b)/a

Prove that sin^(2) (pi/6) + cos^(2) (pi/3) - tan^(2) (pi/4) = - (1)/(2)

Which of the following is not a rational number. a. sin (tan^(-1) 3 + tan^(-1).(1)/(3)) b. cos ((pi)/(2) - sin^(-1).(3)/(4)) c. tan ((1)/(2) cos^(-1).(sqrt5)/(3))

Prove the following: tan[pi/4+1/2cos^(-1)(a/b)]+tan[pi/4-1/2cos^(-1)(a/b)]=(2b)/a

Prove the following: tan[pi/4+1/2cos^(-1)(a/b)]+tan[pi/4-1/2cos^(-1)(a/b)]=(2b)/a

cos[tan^(-1){tan((15pi)/4)}]

sin^(2) (pi/6)+cos^(2) (pi/3)-tan^(2) (pi/4)=-1/2