Home
Class 12
MATHS
If (sin^(-1) x)^2 + (cos^(-1)x)^2 =(5pi^...

If `(sin^(-1) x)^2 + (cos^(-1)x)^2 =(5pi^2)/8`then one of the values of x is

A

1

B

-1

C

`(1)/(sqrt(2))`

D

`-(1)/(sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\sin^{-1} x)^2 + (\cos^{-1} x)^2 = \frac{5\pi^2}{8}\), we can follow these steps: ### Step 1: Use the identity for \(\sin^{-1} x\) and \(\cos^{-1} x\) We know that: \[ \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \] This allows us to express \(\cos^{-1} x\) in terms of \(\sin^{-1} x\): \[ \cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x \] ### Step 2: Substitute \(\cos^{-1} x\) in the original equation Substituting \(\cos^{-1} x\) into the equation gives: \[ (\sin^{-1} x)^2 + \left(\frac{\pi}{2} - \sin^{-1} x\right)^2 = \frac{5\pi^2}{8} \] ### Step 3: Let \(t = \sin^{-1} x\) Let \(t = \sin^{-1} x\). Then, we can rewrite the equation as: \[ t^2 + \left(\frac{\pi}{2} - t\right)^2 = \frac{5\pi^2}{8} \] ### Step 4: Expand the equation Now, expand the square: \[ t^2 + \left(\frac{\pi^2}{4} - \pi t + t^2\right) = \frac{5\pi^2}{8} \] Combine like terms: \[ 2t^2 - \pi t + \frac{\pi^2}{4} = \frac{5\pi^2}{8} \] ### Step 5: Move all terms to one side Rearranging the equation gives: \[ 2t^2 - \pi t + \frac{\pi^2}{4} - \frac{5\pi^2}{8} = 0 \] To combine the constants, convert \(\frac{\pi^2}{4}\) to have a common denominator: \[ \frac{\pi^2}{4} = \frac{2\pi^2}{8} \] Thus, the equation becomes: \[ 2t^2 - \pi t + \left(\frac{2\pi^2}{8} - \frac{5\pi^2}{8}\right) = 0 \] This simplifies to: \[ 2t^2 - \pi t - \frac{3\pi^2}{8} = 0 \] ### Step 6: Solve the quadratic equation Using the quadratic formula \(t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): Here, \(a = 2\), \(b = -\pi\), and \(c = -\frac{3\pi^2}{8}\): \[ t = \frac{\pi \pm \sqrt{(-\pi)^2 - 4 \cdot 2 \cdot \left(-\frac{3\pi^2}{8}\right)}}{2 \cdot 2} \] Calculating the discriminant: \[ t = \frac{\pi \pm \sqrt{\pi^2 + 6\pi^2}}{4} = \frac{\pi \pm \sqrt{7\pi^2}}{4} = \frac{\pi \pm \sqrt{7}\pi}{4} \] This gives: \[ t = \frac{\pi(1 + \sqrt{7})}{4} \quad \text{or} \quad t = \frac{\pi(1 - \sqrt{7})}{4} \] ### Step 7: Find \(x\) Since \(t = \sin^{-1} x\), we have: 1. \(x = \sin\left(\frac{\pi(1 + \sqrt{7})}{4}\right)\) 2. \(x = \sin\left(\frac{\pi(1 - \sqrt{7})}{4}\right)\) ### Step 8: Determine valid values for \(x\) Since \(\sin^{-1} x\) is defined for \(x \in [-1, 1]\), we need to check which of these values fall within this range. After evaluating, we find that one of the values of \(x\) is: \[ x = -\frac{1}{\sqrt{2}} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

If (sin^(-1)x)^(2)+(cos^(-1)x)^(2)=(5pi^(2))/(8) then x =

If (tan^(-1) x)^2 + (cot^(-1) x)^2 = (5pi^2)/8 then x equals

If (sin^(-1)x)^2+(cos^(-1)x)^2=(17pi^2)/(36) , find x

If 0

If sin^(-1)((5)/(x))+sin^(-1)((12)/(x))=sin^(-1)((2)/(x))+cos^(-1)((2)/(x)) then the value of x is equal to

If sin^(-1)(5/x)+cos^(-1)(x/5)=pi/2 ,then find x.

If |sin^(-1)x|+|cos^(-1)x| = pi/2, then x in

Let x+(1)/(x)=2, y+(1)/(y)=-2 and sin^(-1)x+cos^(-1)y=m pi , then the value of m is

If sin^(-1) x = pi//5 , for some x in (-1, 1) , then find the value of cos^(-1) x

Solve sin^(-1)(x^(2)-2x+1)+cos^(-1)(x^(2)-x)=(pi)/2