Home
Class 12
MATHS
sec^-1(sinx) is real if...

`sec^-1(sinx)` is real if

A

` x in (-oo, oo) `

B

` x in [-1,1]`

C

` x = (2n +1)(pi)/(2), n in I `

D

` x= n pi, n in Z`

Text Solution

AI Generated Solution

The correct Answer is:
To determine when \( \sec^{-1}(\sin x) \) is real, we need to analyze the ranges and domains of the involved functions. ### Step-by-Step Solution: 1. **Understanding the Functions**: - The function \( \sin x \) has a range of \( [-1, 1] \). - The function \( \sec^{-1}(t) \) is defined for \( t \) such that \( t \leq -1 \) or \( t \geq 1 \). 2. **Finding Valid Inputs**: - For \( \sec^{-1}(\sin x) \) to be real, \( \sin x \) must take values that are either \( \leq -1 \) or \( \geq 1 \). - However, since the range of \( \sin x \) is limited to \( [-1, 1] \), the only valid values for \( \sin x \) that satisfy the domain of \( \sec^{-1} \) are \( -1 \) and \( 1 \). 3. **Solving for \( x \)**: - We need to find the values of \( x \) for which \( \sin x = 1 \) and \( \sin x = -1 \). - The equation \( \sin x = 1 \) occurs at: \[ x = \frac{\pi}{2} + 2n\pi \quad (n \in \mathbb{Z}) \] - The equation \( \sin x = -1 \) occurs at: \[ x = \frac{3\pi}{2} + 2n\pi \quad (n \in \mathbb{Z}) \] 4. **Combining the Results**: - The values of \( x \) where \( \sec^{-1}(\sin x) \) is real are: \[ x = \frac{\pi}{2} + 2n\pi \quad \text{and} \quad x = \frac{3\pi}{2} + 2n\pi \quad (n \in \mathbb{Z}) \] - These can be expressed as: \[ x = (2n + 1)\frac{\pi}{2} \quad (n \in \mathbb{Z}) \] 5. **Conclusion**: - Thus, \( \sec^{-1}(\sin x) \) is real if \( x \) is of the form \( (2n + 1)\frac{\pi}{2} \) for any integer \( n \). ### Final Answer: The correct option is: \( x = (2n + 1)\frac{\pi}{2} \) for every \( n \in \mathbb{Z} \).
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

For any real number x ge 1 , the expression sec^(2) ( tan^(-1)x) - tan^(2) ( sec^(-1) x) is equal to

Show that the equation e^(sinx)-e^(-sinx)-4=0 has no real solution.

Show that the equation e^(sinx)-e^(-sinx)-4=0 has no real solution.

Among (i) lim_(xtooo) sec^(-1)((x)/(sinx))" and "(ii) lim_(xtooo) sec^(-1)((sinx)/(x)).

int x sinx sec^(3)x dx is equal to

If y+cosx = sinx has a real solution , then :

The equation sin x(sinx+cos x) = k has real solutions, where k is a real number. Then

lim_(x->0^+)((sinx)/(x-sinx))^(sinx) is (a)0 (b) 1 (c) ln e (d) e^1

The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx) -sqrt(1+sinx))} is (0 lt x lt (pi)/(2))

The number of solutions of the equation e^(|sinx|)=sec x for all x in (-pi//2,pi//2) is/are