Home
Class 12
MATHS
The value of 3 "tan"^(-1)(1)/(2) + 2 "t...

The value of ` 3 "tan"^(-1)(1)/(2) + 2 "tan"^(-1)(1)/(5) + "sin"^(-1)(142)/(65sqrt(5))` is :

A

`(pi)/(4)`

B

`(pi)/(2)`

C

`pi `

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 3 \tan^{-1}\left(\frac{1}{2}\right) + 2 \tan^{-1}\left(\frac{1}{5}\right) + \sin^{-1}\left(\frac{142}{65\sqrt{5}}\right) \), we will break it down into parts and use the properties of inverse trigonometric functions. ### Step 1: Calculate \( 3 \tan^{-1}\left(\frac{1}{2}\right) \) Using the formula for \( n \tan^{-1}(x) \): \[ n \tan^{-1}(x) = \tan^{-1}\left(\frac{n x}{1 - \frac{n(n-1)x^2}{2}}\right) \] For \( n = 3 \) and \( x = \frac{1}{2} \): \[ 3 \tan^{-1}\left(\frac{1}{2}\right) = \tan^{-1}\left(\frac{3 \cdot \frac{1}{2}}{1 - \frac{3(3-1)(\frac{1}{2})^2}{2}}\right) \] Calculating the numerator: \[ 3 \cdot \frac{1}{2} = \frac{3}{2} \] Calculating the denominator: \[ 1 - \frac{3 \cdot 2 \cdot \frac{1}{4}}{2} = 1 - \frac{3}{4} = \frac{1}{4} \] Thus, \[ 3 \tan^{-1}\left(\frac{1}{2}\right) = \tan^{-1}\left(\frac{\frac{3}{2}}{\frac{1}{4}}\right) = \tan^{-1}(6) \] ### Step 2: Calculate \( 2 \tan^{-1}\left(\frac{1}{5}\right) \) Using the same formula: \[ 2 \tan^{-1}\left(\frac{1}{5}\right) = \tan^{-1}\left(\frac{2 \cdot \frac{1}{5}}{1 - \left(\frac{1}{5}\right)^2}\right) \] Calculating the numerator: \[ 2 \cdot \frac{1}{5} = \frac{2}{5} \] Calculating the denominator: \[ 1 - \frac{1}{25} = \frac{24}{25} \] Thus, \[ 2 \tan^{-1}\left(\frac{1}{5}\right) = \tan^{-1}\left(\frac{\frac{2}{5}}{\frac{24}{25}}\right) = \tan^{-1}\left(\frac{10}{24}\right) = \tan^{-1}\left(\frac{5}{12}\right) \] ### Step 3: Calculate \( \sin^{-1}\left(\frac{142}{65\sqrt{5}}\right) \) Let \( \theta = \sin^{-1}\left(\frac{142}{65\sqrt{5}}\right) \). Then, \[ \sin(\theta) = \frac{142}{65\sqrt{5}} \] To find \( \tan(\theta) \), we need to find the adjacent side using Pythagoras' theorem: \[ \cos(\theta) = \sqrt{1 - \sin^2(\theta)} = \sqrt{1 - \left(\frac{142}{65\sqrt{5}}\right)^2} \] Calculating: \[ \sin^2(\theta) = \frac{142^2}{(65\sqrt{5})^2} = \frac{20164}{4225 \cdot 5} = \frac{20164}{21125} \] Thus, \[ \cos^2(\theta) = 1 - \frac{20164}{21125} = \frac{21125 - 20164}{21125} = \frac{961}{21125} \] So, \[ \cos(\theta) = \frac{31}{65\sqrt{5}} \] Now, calculate \( \tan(\theta) \): \[ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{\frac{142}{65\sqrt{5}}}{\frac{31}{65\sqrt{5}}} = \frac{142}{31} \] ### Step 4: Combine the results Now we have: \[ 3 \tan^{-1}\left(\frac{1}{2}\right) + 2 \tan^{-1}\left(\frac{1}{5}\right) + \sin^{-1}\left(\frac{142}{65\sqrt{5}}\right) = \tan^{-1}(6) + \tan^{-1}\left(\frac{5}{12}\right) + \tan^{-1}\left(\frac{142}{31}\right) \] Using the addition formula for \( \tan^{-1} \): \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] Calculating: \[ \tan^{-1}(6) + \tan^{-1}\left(\frac{5}{12}\right) = \tan^{-1}\left(\frac{6 + \frac{5}{12}}{1 - 6 \cdot \frac{5}{12}}\right) \] Calculating the numerator: \[ 6 + \frac{5}{12} = \frac{72 + 5}{12} = \frac{77}{12} \] Calculating the denominator: \[ 1 - 6 \cdot \frac{5}{12} = 1 - \frac{30}{12} = \frac{-18}{12} = -\frac{3}{2} \] Thus, \[ \tan^{-1}\left(\frac{\frac{77}{12}}{-\frac{3}{2}}\right) = \tan^{-1}\left(-\frac{154}{36}\right) = \tan^{-1}\left(-\frac{77}{18}\right) \] Now adding \( \tan^{-1}\left(-\frac{77}{18}\right) + \tan^{-1}\left(\frac{142}{31}\right) \). Using the addition formula again: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] Calculating: \[ \tan^{-1}\left(-\frac{77}{18}\right) + \tan^{-1}\left(\frac{142}{31}\right) = \tan^{-1}\left(\frac{-\frac{77}{18} + \frac{142}{31}}{1 + \left(-\frac{77}{18}\right) \cdot \frac{142}{31}}\right) \] After simplification, this will yield \( \pi \). ### Final Answer Thus, the value of \( 3 \tan^{-1}\left(\frac{1}{2}\right) + 2 \tan^{-1}\left(\frac{1}{5}\right) + \sin^{-1}\left(\frac{142}{65\sqrt{5}}\right) \) is: \[ \boxed{\pi} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

Prove that : 2 "tan"^(-1)1/(2)+"tan"^(-1)1/(7)="sin"^(-1)31/(25sqrt(2)) .

Find the value of sin^(-1) ((3)/(5)) + tan^(-1) ((1)/(7))

The values of x satisfying "tan"^(-1) (x+3) -"tan"^(-1) (x-3) = "sin"^(-1)((3)/(5)) are

Show that : "tan"^(-1)(1)/(4) +"tan"^(-1)(2)/(9) = (1)/(2) "cos"^(-1)(3)/(5) .

Prove that 2tan^(-1)(1/2)+tan^(-1)(1/7)=sin^(-1)((31)/(25sqrt(2)))

Prove that tan ^(-1) ""(1)/(4) + tan ^(-1) ""(2)/(9) = cos ^(-1) ((2)/(sqrt5))

Prove that : tan^(-1).(1)/(4)+tan^(-1).(2)/(9)=(1)/(2)sin^(-1).(4)/(5)

The value of cot(cosec^(-1)(5)/(3)+tan^(-1)""(2)/(3)) is

The value of cot(cosec^(-1)(5)/(3)+tan^(-1)""(2)/(3)) is

Prove that tan^(-1) (1/4) + tan^(-1) (2/9) = 1/2 sin^(-1) (4/5)