Home
Class 12
MATHS
The number of positive integral solution...

The number of positive integral solutions of ` tan^(-1)x + cot^(-1)y= tan^(-1)3 ` is :

A

one

B

two

C

three

D

four

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1} x + \cot^{-1} y = \tan^{-1} 3 \) for positive integral solutions, we can follow these steps: ### Step 1: Use the identity for cotangent We know that \( \cot^{-1} y = \frac{\pi}{2} - \tan^{-1} y \). Therefore, we can rewrite the equation as: \[ \tan^{-1} x + \left( \frac{\pi}{2} - \tan^{-1} y \right) = \tan^{-1} 3 \] This simplifies to: \[ \tan^{-1} x - \tan^{-1} y = \tan^{-1} 3 - \frac{\pi}{2} \] ### Step 2: Rearranging the equation Rearranging gives us: \[ \tan^{-1} x - \tan^{-1} y = -\left(\frac{\pi}{2} - \tan^{-1} 3\right) \] Using the property \( \tan^{-1} a - \tan^{-1} b = \tan^{-1} \left( \frac{a-b}{1+ab} \right) \), we can express this as: \[ \tan^{-1} \left( \frac{x - y}{1 + xy} \right) = -\tan^{-1} \left( \frac{1}{3} \right) \] ### Step 3: Convert to tangent Taking the tangent of both sides, we have: \[ \frac{x - y}{1 + xy} = -\frac{1}{3} \] Cross-multiplying gives: \[ 3(x - y) = - (1 + xy) \] Rearranging yields: \[ 3x - 3y + xy + 1 = 0 \] ### Step 4: Rearranging to find y Rearranging this equation gives: \[ xy + 3x + 1 = 3y \] This can be rewritten as: \[ xy - 3y + 3x + 1 = 0 \] Factoring out \( y \): \[ y(x - 3) = - (3x + 1) \] Thus, we have: \[ y = \frac{- (3x + 1)}{x - 3} \] ### Step 5: Finding positive integral solutions For \( y \) to be a positive integer, \( -(3x + 1) \) must be divisible by \( (x - 3) \). 1. **Case \( x = 1 \)**: \[ y = \frac{-(3(1) + 1)}{1 - 3} = \frac{-4}{-2} = 2 \] So, one solution is \( (1, 2) \). 2. **Case \( x = 2 \)**: \[ y = \frac{-(3(2) + 1)}{2 - 3} = \frac{-7}{-1} = 7 \] So, another solution is \( (2, 7) \). 3. **Case \( x = 3 \)**: \[ y = \frac{-(3(3) + 1)}{3 - 3} \text{ (undefined)} \] Thus, no solution for \( x = 3 \). 4. **Case \( x > 3 \)**: As \( x \) increases, \( y \) becomes negative or undefined, leading to no further positive integral solutions. ### Conclusion The only positive integral solutions are \( (1, 2) \) and \( (2, 7) \). Therefore, the number of positive integral solutions is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

Find the number of positive integral solution of the equation Tan^(-1)x+Tan^(-1)(1//y)=Tan^(-1)3 is

STATEMENT-1 : If tan^2 (sin^-1x) > 1 then x in(-1-1/sqrt2)uu(1/sqrt(2).1). STATEMENT-2 : The number of positive integral solution of tan^-1 1/y+cot^-1(1/x)=cot^-1(1/3), where x/y < 1, is 2. STATEMENT -3 : If sin^-1 x=-cos^-1 sqrt(1-x^2) and sin^-1 y=cos^-1 sqrt(1-y^2), then the exact range of (tan^-1 x+ tan6-1 y) is [-pi/4,pi/4].

Find the number of positive integral solution of the equation tan^(-1)x+cos^(-1)(y/(sqrt(1+y^2)))=sin^(-1)(3/(sqrt(10)))

Find the number of positive integral solution of the equation tan^(-1)x+cos^(-1)(y/(sqrt(1-y^2)))=sin^(-1)(3/(sqrt(10)))

Find the number of positive integral solution of the equation tan^(-1)x+cos^(-1)y/(sqrt(1+y^2))=sin^(-1)3/(sqrt(10))

Integrate the functions tan^(-1)x

If x and y are positive integers such that tan^(-1)x+cot^(-1)y=tan^(-1)3 , then:

Solve tan^(-1) x + cot^(-1) (-|x|) = 2 tan^(-1) 6x

Solve : tan^(-1)( 1/2) = cot^(-1) x + tan^(-1)( 1/7)

The number of positive solution satisfying the equation tan^(-1)((1)/(2x+1))+tan^(-1)((1)/(4x+1))=tan^(-1)(2/(x^2)) is