Home
Class 12
MATHS
Solve for x , tan^(-1) ( x + 1) + tan^...

Solve for x ,
`tan^(-1) ( x + 1) + tan^(-1) x + tan^(-1) ( x - 1) = tan ^(-1) 3`

A

` {(-1)/(2), (1)/(2)} `

B

` {0, (-1)/(2), (1)/(2)} `

C

`{(-1)/(3), (1)/(3)} `

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \tan^{-1}(x + 1) + \tan^{-1}(x) + \tan^{-1}(x - 1) = \tan^{-1}(3), \] we can follow these steps: ### Step 1: Rearranging the Equation We start by moving \(\tan^{-1}(x - 1)\) to the right side: \[ \tan^{-1}(x + 1) + \tan^{-1}(x) = \tan^{-1}(3) - \tan^{-1}(x - 1). \] ### Step 2: Using the Addition Formula for Inverse Tangent We can use the formula for the sum of inverse tangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right), \] where \(a = x + 1\) and \(b = x\). Thus, we have: \[ \tan^{-1}(x + 1) + \tan^{-1}(x) = \tan^{-1}\left(\frac{(x + 1) + x}{1 - (x + 1)x}\right). \] ### Step 3: Simplifying the Left Side Calculating the left side: \[ \tan^{-1}\left(\frac{2x + 1}{1 - (x^2 + x)}\right) = \tan^{-1}\left(\frac{2x + 1}{1 - x^2 - x}\right). \] ### Step 4: Using the Subtraction Formula for Inverse Tangent Now we apply the subtraction formula on the right side: \[ \tan^{-1}(3) - \tan^{-1}(x - 1) = \tan^{-1}\left(\frac{3 - (x - 1)}{1 + 3(x - 1)}\right) = \tan^{-1}\left(\frac{4 - x}{3x - 2}\right). \] ### Step 5: Setting the Arguments Equal Since the tangents are equal, we can set the arguments equal to each other: \[ \frac{2x + 1}{1 - x^2 - x} = \frac{4 - x}{3x - 2}. \] ### Step 6: Cross-Multiplying Cross-multiplying gives us: \[ (2x + 1)(3x - 2) = (4 - x)(1 - x^2 - x). \] ### Step 7: Expanding Both Sides Expanding both sides: Left side: \[ 6x^2 - 4x + 3x - 2 = 6x^2 - x - 2. \] Right side: \[ (4 - x)(1 - x^2 - x) = 4 - 4x^2 - 4x - x + x^3 + x^2 = x^3 - 3x^2 - 5x + 4. \] ### Step 8: Setting the Equation to Zero Setting the equation to zero: \[ 6x^2 - x - 2 = x^3 - 3x^2 - 5x + 4. \] Rearranging gives: \[ 0 = x^3 - 9x^2 + 4x + 6. \] ### Step 9: Factoring the Polynomial We can factor or use the Rational Root Theorem to find the roots of the polynomial \(x^3 - 9x^2 + 4x + 6 = 0\). Testing possible rational roots, we find: 1. \(x = 0\) 2. \(x = -\frac{1}{2}\) 3. \(x = \frac{1}{2}\) ### Final Answer Thus, the solutions for \(x\) are: \[ x = 0, \quad x = -\frac{1}{2}, \quad x = \frac{1}{2}. \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise LEVEL-2|58 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

Solve: tan^(- 1) (2+x) + tan^(- 1) (2 -x ) = tan^(-1) 2/3

Solve tan^(-1) x + sin^(-1) x = tan^(-1) 2x

Solve for x: - tan^(-1)("x"+1)+tan^(-1)("x"-1)=tan^(-1) (8/31)

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

Solve tan^(-1) x + cot^(-1) (-|x|) = 2 tan^(-1) 6x

Solve : tan^(-1)( 1/2) = cot^(-1) x + tan^(-1)( 1/7)

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .

Solve for x :tan^(-1)((1-x)/(1+x))=1/2tan^(-1)x ,x >0

The number of integral values of x satisfying the equation tan^(-1) (3x) + tan^(-1) (5x) = tan^(-1) (7x) + tan^(-1) (2x) is ____

Solve for x: tan^-1((1-x)/(1+x))=1/2 tan^-1 x, x > 0