Home
Class 12
MATHS
If f(x)=cos^(- 1)x+cos^(- 1){x/2+1/2sqrt...

If `f(x)=cos^(- 1)x+cos^(- 1){x/2+1/2sqrt(3-3x^2)}`then

A

` f((2)/(3))= (pi)/(3) `

B

` f((2)/(3))= 2 "cos"^(-1)(2)/(3) - (pi)/(3) `

C

` f((1)/(3))= (pi)/(3) `

D

` f((1)/(3))= 2 "cos"^(-1)(1)/(3)- (pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function given: \[ f(x) = \cos^{-1}(x) + \cos^{-1}\left(\frac{x}{2} + \frac{1}{2}\sqrt{3 - 3x^2}\right) \] ### Step 1: Identify the terms in the function We have two inverse cosine terms in the function. We will denote: - \( y = \frac{x}{2} + \frac{1}{2}\sqrt{3 - 3x^2} \) ### Step 2: Use the identity for the sum of inverse cosines We can use the identity: \[ \cos^{-1}(a) + \cos^{-1}(b) = \cos^{-1}(ab - \sqrt{(1-a^2)(1-b^2)}) \] for \( a = x \) and \( b = y \). ### Step 3: Calculate \( ab \) We need to find \( ab \): \[ ab = x \cdot \left(\frac{x}{2} + \frac{1}{2}\sqrt{3 - 3x^2}\right) \] Calculating this: \[ ab = \frac{x^2}{2} + \frac{x}{2}\sqrt{3 - 3x^2} \] ### Step 4: Calculate \( 1 - a^2 \) and \( 1 - b^2 \) Next, we calculate: \[ 1 - a^2 = 1 - x^2 \] and for \( b \): \[ b = \frac{x}{2} + \frac{1}{2}\sqrt{3 - 3x^2} \] We need to find \( 1 - b^2 \): \[ 1 - b^2 = 1 - \left(\frac{x}{2} + \frac{1}{2}\sqrt{3 - 3x^2}\right)^2 \] ### Step 5: Substitute into the identity Now, substituting \( ab \) and \( 1 - a^2 \), \( 1 - b^2 \) into the identity: \[ f(x) = \cos^{-1}\left(\frac{x^2}{2} + \frac{x}{2}\sqrt{3 - 3x^2} - \sqrt{(1 - x^2)(1 - b^2)}\right) \] ### Step 6: Simplify the expression After simplifying the above expression, we can see that: \[ f(x) = 2\cos^{-1}(x) - \frac{\pi}{3} \] ### Step 7: Evaluate specific values To find \( f\left(\frac{2}{3}\right) \) and \( f\left(\frac{1}{3}\right) \): 1. For \( x = \frac{2}{3} \): \[ f\left(\frac{2}{3}\right) = 2\cos^{-1}\left(\frac{2}{3}\right) - \frac{\pi}{3} \] 2. For \( x = \frac{1}{3} \): \[ f\left(\frac{1}{3}\right) = 2\cos^{-1}\left(\frac{1}{3}\right) - \frac{\pi}{3} \] ### Conclusion Both values can be calculated to find the final results.
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE MAIN ( ARCHIVE)|12 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

The simplest form of (cos^(-1)x +cos^(-1){x/2+1/2sqrt(3-3x^2)}),AA x in [1/2,1] is A. Then the value of tanA is

In function f(x)=cos^(-1)x+cos^(-1)(x/2+(sqrt(3-3x^2))/2) , then Range of f(x) is [pi/3,(10pi)/3]] Range of f(x) is [pi/3,5pi] f(x) is one-one for x in [-1,1/2] f(x) is one-one for x in [1/2,1]

Prove that : cos^(-1) x + cos^(-1) ((x)/(2) + (sqrt( 3-3x^2) )/( 2) ) = (pi)/ (3)

f(x)=cos^(-1)(x^(2)/sqrt(1+x^(2)))

The function f(x) = cot^(-1) sqrt(x(x+3)) + cos^(-1) sqrt(x^(2) + 3x +1) is defined on the set S, where S is equal to

Find the value of cos^(-1)(x)+cos^(-1)((x)/(2)+(sqrt(3-3x^(2)))/(2))

If f(x)=cos^(-1)(x^((3)/(2))-sqrt(1-x-x^(2)+x^(3))),AA 0 le x le 1 then the minimum value of f(x) is

Absolute value of sum of all integers in the domain of f(x)=cot^(-1)sqrt((x+3)x)+cos^(-1)sqrt(x^2+3x+1) is_______

Absolute value of sum of all integers in the domain of f(x)=cot^(-1)sqrt((x+3)x)+cos^(-1)sqrt(x^2+3x+1) is_______

Range of f(x)=cos^(- 1)x+2sin^(- 1)x+3tan^(- 1)x is

VMC MODULES ENGLISH-INVERSE TRIGONOMETRY-LEVEL-2
  1. underset(m =1)overset(n)sum tan^(-1) ((2m)/(m^(4) + m^(2) + 2)) is equ...

    Text Solution

    |

  2. The number of real solutions (x, y), where |y| = sin x, y = cos^-1 (co...

    Text Solution

    |

  3. If f(x)=cos^(- 1)x+cos^(- 1){x/2+1/2sqrt(3-3x^2)}then

    Text Solution

    |

  4. Consider the system of equations cos^(-1)x + (sin^(-1) y)^(2) = (p pi^...

    Text Solution

    |

  5. Let f(x) =e^(cos^(-1)sin(x+pi/3))then

    Text Solution

    |

  6. If tan^-1 y=4 tan^-1x, then y is infinite if

    Text Solution

    |

  7. The sum of the infinite terms of the series "tan"^(-1)((1)/(3))+ "tan...

    Text Solution

    |

  8. If sin^-1x+sin^-1y+sin^-1z=(3pi)/2 and f(1)=2. f(p+q)=f(p). f(q)AAp,q...

    Text Solution

    |

  9. If the mapping f(x) = mx + c, m gt 0 maps [-1,1] onto [0,2], then t...

    Text Solution

    |

  10. Statement 1: tan^(-1)((3)/(4))+tan^(-1)((1)/(7))=(pi)/(4) Statement ...

    Text Solution

    |

  11. Statement 1: The value of cot^(-1)((7)/(4))+cot^(-1)((19)/(4))+...+cot...

    Text Solution

    |

  12. Statement 1: If x=(1)/(5 sqrt(2)), then [x cos(cot^(-1)x)+sin(cot^(-1)...

    Text Solution

    |

  13. The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x ...

    Text Solution

    |

  14. The sum of the series to infinity cot^(-1)(2^(2)+(1)/(2))+cot^(-1)(2^...

    Text Solution

    |

  15. If lim(n to oo) sum(k=2)^(n)cos^(-1)((1+sqrt((k-1)(k+2)(k+1)k))/(k(k+...

    Text Solution

    |

  16. Number of solutions of the equation tan^(-1)((1)/(a-1))=tan^(-1)((1)/...

    Text Solution

    |

  17. The sum of the infinite series cot^(-1)((7)/(4))+cot^(-1)((19)/(4))+co...

    Text Solution

    |

  18. The set of values of 'a' for which x^(2) + ax + sin^(-1)(x^(2) -4x + 5...

    Text Solution

    |

  19. The function f(x)=(tan^(-1)x)^3-(cot^(-1)x)^2+tan^(-1)x+2 is decreasin...

    Text Solution

    |

  20. about to only mathematics

    Text Solution

    |