Home
Class 12
MATHS
Statement 1: The value of cot^(-1)((7)/(...

Statement 1: The value of `cot^(-1)((7)/(4))+cot^(-1)((19)/(4))+...+cot^(-1)((4r^(2)+3)/(4))+...` upto infinity is `tan^(-1)(2)`.
Statement 2: `sum_(r=1)^(n)"tan"(x_(r)-x_(r-1))/(1+x_(r-1)x_(r))=tan^(-1)x_(n)-tan^(-1)x_(0)`.

A

Statement-1 is True, Statement-2 is True and Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will analyze both statements step by step. ### Statement 1: We need to evaluate the infinite series: \[ S = \cot^{-1}\left(\frac{7}{4}\right) + \cot^{-1}\left(\frac{19}{4}\right) + \ldots + \cot^{-1}\left(\frac{4r^2 + 3}{4}\right) + \ldots \] 1. **Identify the general term**: The general term can be expressed as: \[ T_r = \cot^{-1}\left(\frac{4r^2 + 3}{4}\right) \] 2. **Convert cotangent inverse to tangent inverse**: We know that: \[ \cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right) \] Thus, \[ T_r = \tan^{-1}\left(\frac{4}{4r^2 + 3}\right) \] 3. **Rewrite the term**: We can express \(T_r\) in a more manageable form: \[ T_r = \tan^{-1}\left(\frac{4}{4r^2 + 3}\right) = \tan^{-1}\left(\frac{4}{4(r^2 + \frac{3}{4})}\right) = \tan^{-1}\left(\frac{1}{r^2 + \frac{3}{4}}\right) \] 4. **Use the tangent addition formula**: The series can be summed up using the formula: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a - b}{1 + ab}\right) \] By recognizing that \(T_r\) can be expressed as: \[ T_r = \tan^{-1}\left(r + \frac{1}{2}\right) - \tan^{-1}\left(r - \frac{1}{2}\right) \] 5. **Sum the series**: The series telescopes: \[ S = \sum_{r=1}^{\infty} \left(\tan^{-1}\left(r + \frac{1}{2}\right) - \tan^{-1}\left(r - \frac{1}{2}\right)\right) \] Most terms cancel out, leading to: \[ S = \lim_{n \to \infty} \left(\tan^{-1}\left(n + \frac{1}{2}\right) - \tan^{-1}\left(\frac{1}{2}\right)\right) \] 6. **Evaluate the limit**: As \(n\) approaches infinity, \(\tan^{-1}(n + \frac{1}{2})\) approaches \(\frac{\pi}{2}\): \[ S = \frac{\pi}{2} - \tan^{-1}\left(\frac{1}{2}\right) \] 7. **Convert to cotangent form**: We know that: \[ \tan^{-1}\left(\frac{1}{2}\right) = \cot^{-1}(2) \] Thus, \[ S = \tan^{-1}(2) \] ### Conclusion for Statement 1: The value of the infinite series is indeed \(\tan^{-1}(2)\), so Statement 1 is true. --- ### Statement 2: We need to verify the identity: \[ \sum_{r=1}^{n} \tan^{-1}\left(\frac{x_r - x_{r-1}}{1 + x_{r-1}x_r}\right) = \tan^{-1}(x_n) - \tan^{-1}(x_0) \] 1. **Recognize the left-hand side**: The left-hand side can be rewritten using the property of the tangent inverse: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a - b}{1 + ab}\right) \] 2. **Apply the formula**: If we denote \(x_r\) and \(x_{r-1}\) as two consecutive terms, we can express: \[ \sum_{r=1}^{n} \tan^{-1}\left(\frac{x_r - x_{r-1}}{1 + x_{r-1}x_r}\right) = \tan^{-1}(x_n) - \tan^{-1}(x_0) \] 3. **Telescoping nature**: The series telescopes, meaning that all intermediate terms cancel out, leading to: \[ \tan^{-1}(x_n) - \tan^{-1}(x_0) \] ### Conclusion for Statement 2: The identity holds true, so Statement 2 is also true. ### Final Conclusion: Both statements are true, and Statement 2 provides a valid explanation for Statement 1. ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE MAIN ( ARCHIVE)|12 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

Prove that sum_(r=1)^(n) tan^(-1) ((2^(r -1))/(1 + 2^(2r -1))) = tan^(-1) (2^(n)) - (pi)/(4)

The value of cot^(-1)(-x) x in R in terms of cot^(-1)x is

Solve cot^(-1) ((3x^(2) + 1)/(x)) = cot^(-1) ((1 - 3x^(2))/(x)) - tan^(-1) 6x

The value of int_(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2)))dx is____.

The derivative of tan^(-1)x w.r.t cot^(-1) x is

The value of tan sum_(r=1)^oo tan^-1 (4/(4r^2 +3))=

The value of cot^(-1)(-x) x in R in terms of cot^(-1)x is "…….."

tan^(- 1) (1/(x+y)) +tan^(- 1) (y/(x^2+x y+1)) =cot^(- 1)x

If cot^(-1)x+tan^(-1)(1/2)=pi/4 then x is

If tan^(-1)x+tan^(-1)y=(pi)/(4) , then cot^(-1)x+cot^(-1)y=

VMC MODULES ENGLISH-INVERSE TRIGONOMETRY-LEVEL-2
  1. If the mapping f(x) = mx + c, m gt 0 maps [-1,1] onto [0,2], then t...

    Text Solution

    |

  2. Statement 1: tan^(-1)((3)/(4))+tan^(-1)((1)/(7))=(pi)/(4) Statement ...

    Text Solution

    |

  3. Statement 1: The value of cot^(-1)((7)/(4))+cot^(-1)((19)/(4))+...+cot...

    Text Solution

    |

  4. Statement 1: If x=(1)/(5 sqrt(2)), then [x cos(cot^(-1)x)+sin(cot^(-1)...

    Text Solution

    |

  5. The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x ...

    Text Solution

    |

  6. The sum of the series to infinity cot^(-1)(2^(2)+(1)/(2))+cot^(-1)(2^...

    Text Solution

    |

  7. If lim(n to oo) sum(k=2)^(n)cos^(-1)((1+sqrt((k-1)(k+2)(k+1)k))/(k(k+...

    Text Solution

    |

  8. Number of solutions of the equation tan^(-1)((1)/(a-1))=tan^(-1)((1)/...

    Text Solution

    |

  9. The sum of the infinite series cot^(-1)((7)/(4))+cot^(-1)((19)/(4))+co...

    Text Solution

    |

  10. The set of values of 'a' for which x^(2) + ax + sin^(-1)(x^(2) -4x + 5...

    Text Solution

    |

  11. The function f(x)=(tan^(-1)x)^3-(cot^(-1)x)^2+tan^(-1)x+2 is decreasin...

    Text Solution

    |

  12. about to only mathematics

    Text Solution

    |

  13. If x(1), x(2) , x(3) , x(4) are the roots of the equation x^(4) - x...

    Text Solution

    |

  14. If a(1), a(2), a(3),...., a(n) is an A.P. with common difference d, th...

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. The least and the greatest values of (sin^(-1)x)^3+(cos^(-1)x)^3 are (...

    Text Solution

    |

  17. The equation (cosp-1)^x^2+(cos p)x+s in p=0 in the variable x has real...

    Text Solution

    |

  18. It is given that A=(tan^(-1)x)^(3)+(cot^(-1)x)^(3) where x gt 0 and B=...

    Text Solution

    |

  19. It is given that A=(tan^(-1)x)^(3)+(cot^(-1)x)^(3) where x gt 0 and B=...

    Text Solution

    |

  20. It is given that A=(tan^(-1)x)^(3)+(cot^(-1)x)^(3) where x gt 0 and B=...

    Text Solution

    |