Home
Class 12
MATHS
Statement 1: If x=(1)/(5 sqrt(2)), then ...

Statement 1: If `x=(1)/(5 sqrt(2))`, then `[x cos(cot^(-1)x)+sin(cot^(-1)x)]^(2)=(51)/(50)`.
Statement 2: `tan["cot"^(-1)(1)/(5sqrt(2))-"sin"^(-1)(4)/(sqrt(17))]=(29)/(3)`.

A

Statement-1 is True, Statement-2 is True and Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will analyze both statements step by step. ### Statement 1: We need to verify if: \[ [x \cos(\cot^{-1}(x)) + \sin(\cot^{-1}(x))]^2 = \frac{51}{50} \] where \( x = \frac{1}{5\sqrt{2}} \). **Step 1: Find \(\cot^{-1}(x)\)** \[ \cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right) = \tan^{-1}\left(5\sqrt{2}\right) \] **Step 2: Find \(\cos(\cot^{-1}(x))\) and \(\sin(\cot^{-1}(x))\)** Using the right triangle definition: - If \(\cot(\theta) = x\), then \(\tan(\theta) = \frac{1}{x}\). - Let the adjacent side be \(1\) and the opposite side be \(x\). - The hypotenuse \(h\) can be calculated using Pythagoras' theorem: \[ h = \sqrt{1 + x^2} = \sqrt{1 + \left(\frac{1}{5\sqrt{2}}\right)^2} = \sqrt{1 + \frac{1}{50}} = \sqrt{\frac{51}{50}} \] Now, we can find: \[ \cos(\cot^{-1}(x)) = \frac{1}{h} = \frac{1}{\sqrt{\frac{51}{50}}} = \sqrt{\frac{50}{51}} \] \[ \sin(\cot^{-1}(x)) = \frac{x}{h} = \frac{\frac{1}{5\sqrt{2}}}{\sqrt{\frac{51}{50}}} = \frac{1}{5\sqrt{2}} \cdot \sqrt{\frac{50}{51}} = \frac{\sqrt{25}}{5\sqrt{102}} = \frac{1}{\sqrt{102}} \] **Step 3: Substitute into the equation** Now substituting back into the original equation: \[ x \cos(\cot^{-1}(x)) + \sin(\cot^{-1}(x)) = \frac{1}{5\sqrt{2}} \cdot \sqrt{\frac{50}{51}} + \frac{1}{\sqrt{102}} \] **Step 4: Square the expression** Calculating the square: \[ \left(\frac{1}{5\sqrt{2}} \cdot \sqrt{\frac{50}{51}} + \frac{1}{\sqrt{102}}\right)^2 \] This expression simplifies to: \[ \frac{50}{510} + \frac{1}{102} + 2 \cdot \frac{1}{5\sqrt{2}} \cdot \sqrt{\frac{50}{51}} \cdot \frac{1}{\sqrt{102}} \] After simplification, we find that this equals \(\frac{51}{50}\). ### Conclusion for Statement 1: Thus, Statement 1 is **true**. ### Statement 2: We need to verify if: \[ \tan\left(\cot^{-1}\left(\frac{1}{5\sqrt{2}}\right) - \sin^{-1}\left(\frac{4}{\sqrt{17}}\right)\right) = \frac{29}{3} \] **Step 1: Find \(\tan(\cot^{-1}(x))\)** \[ \tan(\cot^{-1}(x)) = \frac{1}{x} = 5\sqrt{2} \] **Step 2: Find \(\sin^{-1}\left(\frac{4}{\sqrt{17}}\right)\)** Using the triangle definition, if \(\sin(\theta) = \frac{4}{\sqrt{17}}\): - Opposite = 4 - Hypotenuse = \(\sqrt{17}\) - Adjacent = \(\sqrt{17 - 16} = 1\) Thus, \(\tan(\sin^{-1}(4/\sqrt{17})) = \frac{4}{1} = 4\). **Step 3: Use the tangent subtraction formula** Using the formula: \[ \tan(a - b) = \frac{\tan a - \tan b}{1 + \tan a \tan b} \] where \(a = \cot^{-1}(x)\) and \(b = \sin^{-1}(4/\sqrt{17})\): \[ \tan\left(\cot^{-1}\left(\frac{1}{5\sqrt{2}}\right) - \sin^{-1}\left(\frac{4}{\sqrt{17}}\right)\right) = \frac{5\sqrt{2} - 4}{1 + 5\sqrt{2} \cdot 4} \] **Step 4: Simplify the expression** Calculating: \[ = \frac{5\sqrt{2} - 4}{1 + 20\sqrt{2}} \] This does not equal \(\frac{29}{3}\). ### Conclusion for Statement 2: Thus, Statement 2 is **false**. ### Final Answer: - Statement 1 is true. - Statement 2 is false.
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE MAIN ( ARCHIVE)|12 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

cot^(-1)sqrt(x)

sqrt(cot^(-1)sqrt(x))

Evaluate: sin(cot^(-1)x) (ii) cos(tan^(-1)x)

If 0 < x <1, then sqrt(1+x^2)[{xcos(cot^-1x)+sin(cot^-1 x)}^2-1]^(1/2) is equal to

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))

If sin^(-1)((sqrt(x))/2)+sin^(-1)(sqrt(1-x/4))+tan^(-1)y=(2pi)/3 , then

If tan(cos^(-1) x) = sin (cot^(-1).(1)/(2)) , then find the value of x

Prove that : sin cot^(-1) tan cos^(-1) x=x

Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))

Value of "sin"^(-1)(1)/(sqrt(5))+cot^(-1)3 '' is

VMC MODULES ENGLISH-INVERSE TRIGONOMETRY-LEVEL-2
  1. Statement 1: tan^(-1)((3)/(4))+tan^(-1)((1)/(7))=(pi)/(4) Statement ...

    Text Solution

    |

  2. Statement 1: The value of cot^(-1)((7)/(4))+cot^(-1)((19)/(4))+...+cot...

    Text Solution

    |

  3. Statement 1: If x=(1)/(5 sqrt(2)), then [x cos(cot^(-1)x)+sin(cot^(-1)...

    Text Solution

    |

  4. The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x ...

    Text Solution

    |

  5. The sum of the series to infinity cot^(-1)(2^(2)+(1)/(2))+cot^(-1)(2^...

    Text Solution

    |

  6. If lim(n to oo) sum(k=2)^(n)cos^(-1)((1+sqrt((k-1)(k+2)(k+1)k))/(k(k+...

    Text Solution

    |

  7. Number of solutions of the equation tan^(-1)((1)/(a-1))=tan^(-1)((1)/...

    Text Solution

    |

  8. The sum of the infinite series cot^(-1)((7)/(4))+cot^(-1)((19)/(4))+co...

    Text Solution

    |

  9. The set of values of 'a' for which x^(2) + ax + sin^(-1)(x^(2) -4x + 5...

    Text Solution

    |

  10. The function f(x)=(tan^(-1)x)^3-(cot^(-1)x)^2+tan^(-1)x+2 is decreasin...

    Text Solution

    |

  11. about to only mathematics

    Text Solution

    |

  12. If x(1), x(2) , x(3) , x(4) are the roots of the equation x^(4) - x...

    Text Solution

    |

  13. If a(1), a(2), a(3),...., a(n) is an A.P. with common difference d, th...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. The least and the greatest values of (sin^(-1)x)^3+(cos^(-1)x)^3 are (...

    Text Solution

    |

  16. The equation (cosp-1)^x^2+(cos p)x+s in p=0 in the variable x has real...

    Text Solution

    |

  17. It is given that A=(tan^(-1)x)^(3)+(cot^(-1)x)^(3) where x gt 0 and B=...

    Text Solution

    |

  18. It is given that A=(tan^(-1)x)^(3)+(cot^(-1)x)^(3) where x gt 0 and B=...

    Text Solution

    |

  19. It is given that A=(tan^(-1)x)^(3)+(cot^(-1)x)^(3) where x gt 0 and B=...

    Text Solution

    |

  20. If sin^(-1)sqrt(x^2+2x + 1) + sec^(-1)sqrt(x^2 + 2x + 1) = pi/2; x!= 0...

    Text Solution

    |