Home
Class 12
MATHS
If lim(n to oo) sum(k=2)^(n)cos^(-1)((1...

If `lim_(n to oo) sum_(k=2)^(n)cos^(-1)((1+sqrt((k-1)(k+2)(k+1)k))/(k(k+1)))=(120pi)/(lambda)`, find the value of `lambda`.

A

700

B

720

C

760

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the limit and the summation involved in the expression. ### Step 1: Rewrite the Expression We start with the limit: \[ \lim_{n \to \infty} \sum_{k=2}^{n} \cos^{-1}\left(\frac{1 + \sqrt{(k-1)(k+2)(k+1)k}}{k(k+1)}\right) \] ### Step 2: Simplify the Argument of the Inverse Cosine We can simplify the expression inside the inverse cosine: \[ \sqrt{(k-1)(k+2)(k+1)k} = \sqrt{(k^2 + k - 2)(k^2 + 2k - 1)} \] This can be rewritten as: \[ \sqrt{(k^2 - 1)(k^2 + 2k)} = \sqrt{k^4 + k^2 - 2k^2 - 1} = \sqrt{k^4 + k^2 - 2} \] ### Step 3: Rewrite the Inverse Cosine Now we rewrite the argument: \[ \cos^{-1}\left(\frac{1 + \sqrt{(k-1)(k+2)(k+1)k}}{k(k+1)}\right) \] This can be expressed as: \[ \cos^{-1}\left(\frac{1}{k(k+1)} + \sqrt{\frac{(k-1)(k+2)(k+1)k}{k^2(k+1)^2}}\right) \] ### Step 4: Use the Cosine Addition Formula Using the identity: \[ \cos^{-1}(x) + \cos^{-1}(y) = \cos^{-1}(xy + \sqrt{(1-x^2)(1-y^2)}) \] we can simplify further. ### Step 5: Recognize the Telescoping Series The sum becomes: \[ \sum_{k=2}^{n} \left(\cos^{-1}\left(\frac{1}{k+1}\right) - \cos^{-1}\left(\frac{1}{k}\right)\right) \] This is a telescoping series where most terms cancel out. ### Step 6: Evaluate the Limit After cancellation, we are left with: \[ \cos^{-1}\left(\frac{1}{n+1}\right) - \cos^{-1}\left(\frac{1}{2}\right) \] Taking the limit as \( n \to \infty \): \[ \lim_{n \to \infty} \left(\cos^{-1}(0) - \cos^{-1}\left(\frac{1}{2}\right)\right) = \frac{\pi}{2} - \frac{\pi}{3} = \frac{\pi}{6} \] ### Step 7: Set the Equation We have: \[ \frac{\pi}{6} = \frac{120\pi}{\lambda} \] Cross-multiplying gives: \[ \lambda = 720 \] ### Final Answer Thus, the value of \( \lambda \) is: \[ \boxed{720} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE MAIN ( ARCHIVE)|12 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

Find the value lim_(n rarr oo) sum_(k=2)^(n) cos^(-1) ((1 + sqrt((k -1) k(k + 1) (k + 2)))/(k(k + 1)))

The value of lim _( n to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=

The value of sum_(k=1)^(3) cos^(2)(2k-1)(pi)/(12), is

Let f(n)=sum_(k=-n)^(n)(cot^(-1)((1)/(k))-tan^(-1)(k)) such that sum_(n=2)^(10)(f(n)+f(n-1))=a pi then find the value of (a+1) .

If lim _( n to oo) (r +2)/(2 ^(r+1) r (r+1))=1/k, then k =

Evaluate lim_(x to 1) (sum_(k=1)^(100) x^(k) - 100)/(x-1).

Find the sum of the series sum_(k=1)^(360)(1/(ksqrt(k+1)+(k+1)sqrt(k)))

Find the sum S = sum _( k =1) ^( 2016) (-1) ^(( (k +1))/(2))k

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

If sum_(k=1)^(k=n)tan^(- 1)((2k)/(2+k^2+k^4))=tan^(- 1)(6/7), then the value of 'n' is equal to

VMC MODULES ENGLISH-INVERSE TRIGONOMETRY-LEVEL-2
  1. The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x ...

    Text Solution

    |

  2. The sum of the series to infinity cot^(-1)(2^(2)+(1)/(2))+cot^(-1)(2^...

    Text Solution

    |

  3. If lim(n to oo) sum(k=2)^(n)cos^(-1)((1+sqrt((k-1)(k+2)(k+1)k))/(k(k+...

    Text Solution

    |

  4. Number of solutions of the equation tan^(-1)((1)/(a-1))=tan^(-1)((1)/...

    Text Solution

    |

  5. The sum of the infinite series cot^(-1)((7)/(4))+cot^(-1)((19)/(4))+co...

    Text Solution

    |

  6. The set of values of 'a' for which x^(2) + ax + sin^(-1)(x^(2) -4x + 5...

    Text Solution

    |

  7. The function f(x)=(tan^(-1)x)^3-(cot^(-1)x)^2+tan^(-1)x+2 is decreasin...

    Text Solution

    |

  8. about to only mathematics

    Text Solution

    |

  9. If x(1), x(2) , x(3) , x(4) are the roots of the equation x^(4) - x...

    Text Solution

    |

  10. If a(1), a(2), a(3),...., a(n) is an A.P. with common difference d, th...

    Text Solution

    |

  11. about to only mathematics

    Text Solution

    |

  12. The least and the greatest values of (sin^(-1)x)^3+(cos^(-1)x)^3 are (...

    Text Solution

    |

  13. The equation (cosp-1)^x^2+(cos p)x+s in p=0 in the variable x has real...

    Text Solution

    |

  14. It is given that A=(tan^(-1)x)^(3)+(cot^(-1)x)^(3) where x gt 0 and B=...

    Text Solution

    |

  15. It is given that A=(tan^(-1)x)^(3)+(cot^(-1)x)^(3) where x gt 0 and B=...

    Text Solution

    |

  16. It is given that A=(tan^(-1)x)^(3)+(cot^(-1)x)^(3) where x gt 0 and B=...

    Text Solution

    |

  17. If sin^(-1)sqrt(x^2+2x + 1) + sec^(-1)sqrt(x^2 + 2x + 1) = pi/2; x!= 0...

    Text Solution

    |

  18. The value of a for which a x^2+sin^(-1)(x^2-2x+2)+cos^(-1)(x^2-2x+2)=1...

    Text Solution

    |

  19. Find the sum of infinite series s = sin^(-1) ( 1/sqrt2) + sin ^(-1) ...

    Text Solution

    |

  20. The number of solutions for the equation sin^(-1) sqrt((x^(2)-x+1))+c...

    Text Solution

    |