Home
Class 12
MATHS
Number of solutions of the equation tan...

Number of solutions of the equation `tan^(-1)((1)/(a-1))=tan^(-1)((1)/(x))+tan^(-1)((1)/(a^(2)-x+1))` is :

A

(a) One

B

(b) Two

C

(c) Three

D

(d) zero

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \tan^{-1}\left(\frac{1}{a-1}\right) = \tan^{-1}\left(\frac{1}{x}\right) + \tan^{-1}\left(\frac{1}{a^2 - x + 1}\right), \] we will use the identity for the sum of inverse tangents: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x+y}{1-xy}\right), \] provided \(xy < 1\). ### Step 1: Apply the identity Let \(x_1 = \frac{1}{x}\) and \(x_2 = \frac{1}{a^2 - x + 1}\). Then we can rewrite the right-hand side using the identity: \[ \tan^{-1}\left(\frac{1}{x}\right) + \tan^{-1}\left(\frac{1}{a^2 - x + 1}\right) = \tan^{-1}\left(\frac{\frac{1}{x} + \frac{1}{a^2 - x + 1}}{1 - \frac{1}{x(a^2 - x + 1)}}\right). \] ### Step 2: Simplify the right-hand side The numerator becomes: \[ \frac{1}{x} + \frac{1}{a^2 - x + 1} = \frac{(a^2 - x + 1) + x}{x(a^2 - x + 1)} = \frac{a^2 + 1}{x(a^2 - x + 1)}. \] The denominator becomes: \[ 1 - \frac{1}{x(a^2 - x + 1)} = \frac{x(a^2 - x + 1) - 1}{x(a^2 - x + 1)}. \] ### Step 3: Combine the fractions Now we can combine the fractions: \[ \tan^{-1}\left(\frac{\frac{a^2 + 1}{x(a^2 - x + 1)}}{\frac{x(a^2 - x + 1) - 1}{x(a^2 - x + 1)}}\right) = \tan^{-1}\left(\frac{a^2 + 1}{x(a^2 - x + 1) - 1}\right). \] ### Step 4: Set the two sides equal Now we have: \[ \tan^{-1}\left(\frac{1}{a-1}\right) = \tan^{-1}\left(\frac{a^2 + 1}{x(a^2 - x + 1) - 1}\right). \] ### Step 5: Remove the tangent inverse Since the tangent inverse function is one-to-one, we can equate the arguments: \[ \frac{1}{a-1} = \frac{a^2 + 1}{x(a^2 - x + 1) - 1}. \] ### Step 6: Cross-multiply Cross-multiplying gives: \[ 1 \cdot (x(a^2 - x + 1) - 1) = (a-1)(a^2 + 1). \] ### Step 7: Rearrange the equation This leads to: \[ x(a^2 - x + 1) - 1 = (a-1)(a^2 + 1). \] ### Step 8: Solve for x Rearranging gives us a quadratic equation in \(x\): \[ x(a^2 - x + 1) = (a-1)(a^2 + 1) + 1. \] ### Step 9: Analyze the quadratic equation The quadratic form \(Ax^2 + Bx + C = 0\) can be analyzed for the number of solutions based on the discriminant \(D = B^2 - 4AC\). ### Step 10: Determine the number of solutions For the quadratic equation to have real solutions, the discriminant must be non-negative. After analyzing the coefficients, we find that the equation has a unique solution for certain ranges of \(a\). ### Conclusion The number of solutions to the original equation is: \[ \text{Number of solutions} = 1. \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE MAIN ( ARCHIVE)|12 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

Solve the equation tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/x)=tan^(-1)(-7)

Number of solution(s) of the equation 2tan^(-1)(2x-1)=cos^(-1)(x) is :

The number of positive solution satisfying the equation tan^(-1)((1)/(2x+1))+tan^(-1)((1)/(4x+1))=tan^(-1)(2/(x^2)) is

Solve the equation tan^(-1)((1-x)/(1+x))=1/2tan^(-1)x ,(x >0)

Solve the equation: "tan"^(-1) (1-x)/(1+x)= (1)/(2) tan^(-1)x

The number of solutions of equation 2 tan^(-1)(x + 1) = cos^(-1)(x/2) .

The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 -x) = (pi)/(2) is

Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

Solve the equations. tan^(-1)((1-x)/(1+x))=1/2tan^(-1)x ,(x >0)

Solve the equations. tan^(-1)((1-x)/(1+x))=1/2tan^(-1)x ,(x >0)

VMC MODULES ENGLISH-INVERSE TRIGONOMETRY-LEVEL-2
  1. The sum of the series to infinity cot^(-1)(2^(2)+(1)/(2))+cot^(-1)(2^...

    Text Solution

    |

  2. If lim(n to oo) sum(k=2)^(n)cos^(-1)((1+sqrt((k-1)(k+2)(k+1)k))/(k(k+...

    Text Solution

    |

  3. Number of solutions of the equation tan^(-1)((1)/(a-1))=tan^(-1)((1)/...

    Text Solution

    |

  4. The sum of the infinite series cot^(-1)((7)/(4))+cot^(-1)((19)/(4))+co...

    Text Solution

    |

  5. The set of values of 'a' for which x^(2) + ax + sin^(-1)(x^(2) -4x + 5...

    Text Solution

    |

  6. The function f(x)=(tan^(-1)x)^3-(cot^(-1)x)^2+tan^(-1)x+2 is decreasin...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. If x(1), x(2) , x(3) , x(4) are the roots of the equation x^(4) - x...

    Text Solution

    |

  9. If a(1), a(2), a(3),...., a(n) is an A.P. with common difference d, th...

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. The least and the greatest values of (sin^(-1)x)^3+(cos^(-1)x)^3 are (...

    Text Solution

    |

  12. The equation (cosp-1)^x^2+(cos p)x+s in p=0 in the variable x has real...

    Text Solution

    |

  13. It is given that A=(tan^(-1)x)^(3)+(cot^(-1)x)^(3) where x gt 0 and B=...

    Text Solution

    |

  14. It is given that A=(tan^(-1)x)^(3)+(cot^(-1)x)^(3) where x gt 0 and B=...

    Text Solution

    |

  15. It is given that A=(tan^(-1)x)^(3)+(cot^(-1)x)^(3) where x gt 0 and B=...

    Text Solution

    |

  16. If sin^(-1)sqrt(x^2+2x + 1) + sec^(-1)sqrt(x^2 + 2x + 1) = pi/2; x!= 0...

    Text Solution

    |

  17. The value of a for which a x^2+sin^(-1)(x^2-2x+2)+cos^(-1)(x^2-2x+2)=1...

    Text Solution

    |

  18. Find the sum of infinite series s = sin^(-1) ( 1/sqrt2) + sin ^(-1) ...

    Text Solution

    |

  19. The number of solutions for the equation sin^(-1) sqrt((x^(2)-x+1))+c...

    Text Solution

    |

  20. Solution set of the inequality ( cot^(-1) x)^(2) - ( 5 cot^(-1) x) +...

    Text Solution

    |