Home
Class 12
MATHS
The function f(x)=(tan^(-1)x)^3-(cot^(-1...

The function `f(x)=(tan^(-1)x)^3-(cot^(-1)x)^2+tan^(-1)x+2` is decreasing `AAx in R` increasing `AAx in R` bounded (d) Many one functions

A

Decreasing `AA x in R`

B

Increasing `AA x in R`

C

Many one function

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the nature of the function \( f(x) = (\tan^{-1} x)^3 - (\cot^{-1} x)^2 + \tan^{-1} x + 2 \), we will follow these steps: ### Step 1: Differentiate the function We need to find \( f'(x) \) to analyze whether the function is increasing or decreasing. Using the chain rule and the derivatives of the inverse trigonometric functions, we differentiate each term: - The derivative of \( (\tan^{-1} x)^3 \) is \( 3(\tan^{-1} x)^2 \cdot \frac{1}{1 + x^2} \). - The derivative of \( -(\cot^{-1} x)^2 \) is \( -2(\cot^{-1} x) \cdot \left(-\frac{1}{1 + x^2}\right) = \frac{2(\cot^{-1} x)}{1 + x^2} \). - The derivative of \( \tan^{-1} x \) is \( \frac{1}{1 + x^2} \). - The derivative of the constant \( 2 \) is \( 0 \). So, we can write: \[ f'(x) = 3(\tan^{-1} x)^2 \cdot \frac{1}{1 + x^2} + \frac{2(\cot^{-1} x)}{1 + x^2} + \frac{1}{1 + x^2} \] ### Step 2: Simplify the derivative Now, we can factor out \( \frac{1}{1 + x^2} \): \[ f'(x) = \frac{1}{1 + x^2} \left( 3(\tan^{-1} x)^2 + 2(\cot^{-1} x) + 1 \right) \] ### Step 3: Analyze the sign of \( f'(x) \) The term \( 1 + x^2 \) is always positive for all \( x \in \mathbb{R} \). Next, we need to analyze the expression \( 3(\tan^{-1} x)^2 + 2(\cot^{-1} x) + 1 \): - \( \tan^{-1} x \) ranges from \( 0 \) to \( \frac{\pi}{2} \) as \( x \) goes from \( 0 \) to \( \infty \), and \( \cot^{-1} x = \frac{\pi}{2} - \tan^{-1} x \) also ranges from \( \frac{\pi}{2} \) to \( 0 \). - Both \( (\tan^{-1} x)^2 \) and \( \cot^{-1} x \) are non-negative. Since both components are non-negative, we can conclude that \( 3(\tan^{-1} x)^2 + 2(\cot^{-1} x) + 1 \) is also positive for all \( x \). ### Step 4: Conclusion Since \( f'(x) > 0 \) for all \( x \in \mathbb{R} \), we conclude that the function \( f(x) \) is increasing for all \( x \in \mathbb{R} \). ### Final Answer The function \( f(x) \) is **increasing** for all \( x \in \mathbb{R}**. ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE MAIN ( ARCHIVE)|12 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

The function f(x)=(tan^(-1)x)^3-(cot^(-1)x)^2+tan^(-1)x+2 is (a)decreasing AAx in R (b)increasing AAx in R (c)bounded (d) Many one functions

The function f(x)=tan^(-1)x-x is decreasing on the set

The range of the function , f (x) = tan^(-1) ((1+x)/(1 - x)) - tan^(-1) x is

The domain set of the function f(x) = tan^(-1) x -cot ^(-1) x + cos ^(-1) ( 2-x) is

Show that f(x)=tan^(-1)x-x is decreasing function on Rdot

Show that f(x)=tan^(-1)x-x is decreasing function on Rdot

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in

The function f(x) = tan ^-1 x - In(1 + x^2) is increasing for

The function f(x) = tan ^(-1)x -x decreases in the interval

Prove that the function f(x)=(log)_e(x^2+1)-e^(-x)+1 is strictly increasing AAx in Rdot

VMC MODULES ENGLISH-INVERSE TRIGONOMETRY-LEVEL-2
  1. The sum of the infinite series cot^(-1)((7)/(4))+cot^(-1)((19)/(4))+co...

    Text Solution

    |

  2. The set of values of 'a' for which x^(2) + ax + sin^(-1)(x^(2) -4x + 5...

    Text Solution

    |

  3. The function f(x)=(tan^(-1)x)^3-(cot^(-1)x)^2+tan^(-1)x+2 is decreasin...

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. If x(1), x(2) , x(3) , x(4) are the roots of the equation x^(4) - x...

    Text Solution

    |

  6. If a(1), a(2), a(3),...., a(n) is an A.P. with common difference d, th...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. The least and the greatest values of (sin^(-1)x)^3+(cos^(-1)x)^3 are (...

    Text Solution

    |

  9. The equation (cosp-1)^x^2+(cos p)x+s in p=0 in the variable x has real...

    Text Solution

    |

  10. It is given that A=(tan^(-1)x)^(3)+(cot^(-1)x)^(3) where x gt 0 and B=...

    Text Solution

    |

  11. It is given that A=(tan^(-1)x)^(3)+(cot^(-1)x)^(3) where x gt 0 and B=...

    Text Solution

    |

  12. It is given that A=(tan^(-1)x)^(3)+(cot^(-1)x)^(3) where x gt 0 and B=...

    Text Solution

    |

  13. If sin^(-1)sqrt(x^2+2x + 1) + sec^(-1)sqrt(x^2 + 2x + 1) = pi/2; x!= 0...

    Text Solution

    |

  14. The value of a for which a x^2+sin^(-1)(x^2-2x+2)+cos^(-1)(x^2-2x+2)=1...

    Text Solution

    |

  15. Find the sum of infinite series s = sin^(-1) ( 1/sqrt2) + sin ^(-1) ...

    Text Solution

    |

  16. The number of solutions for the equation sin^(-1) sqrt((x^(2)-x+1))+c...

    Text Solution

    |

  17. Solution set of the inequality ( cot^(-1) x)^(2) - ( 5 cot^(-1) x) +...

    Text Solution

    |

  18. Solve tan^(-1)x+sin^(-1)x=tan^(-1)2xdot

    Text Solution

    |

  19. If sin^(-1)(x^2-4x+5)+cos^(-1)(y^2-2y+2)=pi/2 then find the value of x...

    Text Solution

    |

  20. If x and y are positive integers such that tan^(-1)x+cot^(-1)y=tan^(-...

    Text Solution

    |