Home
Class 12
MATHS
It is given that A=(tan^(-1)x)^(3)+(cot^...

It is given that `A=(tan^(-1)x)^(3)+(cot^(-1)x)^(3)` where `x gt 0` and `B=(cos^(-1)t)^(2)+(sin^(-1)t)^(2)` where `t in [0, (1)/(sqrt(2))]`, and `sin^(-1)x+cos^(-1)x=(pi)/(2)` for `-1 le x le 1` and `tan^(-1)x +cot^(-1)x=(pi)/(2)` for `x in R`.
The maximum value of B is :

A

`(pi^(2))/(8)`

B

`(pi^(2))/(16)`

C

`(pi^(2))/(4)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of \( B = (\cos^{-1} t)^2 + (\sin^{-1} t)^2 \) where \( t \in [0, \frac{1}{\sqrt{2}}] \), we can use the identity \( \sin^{-1} t + \cos^{-1} t = \frac{\pi}{2} \). ### Step-by-step Solution: 1. **Use the identity**: \[ \sin^{-1} t + \cos^{-1} t = \frac{\pi}{2} \] Let's denote \( \sin^{-1} t = y \). Then, \( \cos^{-1} t = \frac{\pi}{2} - y \). 2. **Substitute into B**: \[ B = \left(\cos^{-1} t\right)^2 + \left(\sin^{-1} t\right)^2 = \left(\frac{\pi}{2} - y\right)^2 + y^2 \] 3. **Expand the expression**: \[ B = \left(\frac{\pi}{2}\right)^2 - 2 \cdot \frac{\pi}{2} \cdot y + y^2 + y^2 = \frac{\pi^2}{4} - \pi y + 2y^2 \] 4. **Differentiate B with respect to y**: \[ \frac{dB}{dy} = -\pi + 4y \] 5. **Set the derivative to zero to find critical points**: \[ -\pi + 4y = 0 \implies y = \frac{\pi}{4} \] 6. **Find the corresponding value of \( t \)**: Since \( y = \sin^{-1} t \), \[ t = \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] 7. **Evaluate B at the critical point**: \[ B = \left(\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)\right)^2 + \left(\sin^{-1}\left(\frac{1}{\sqrt{2}}\right)\right)^2 \] Both \( \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) \) and \( \cos^{-1}\left(\frac{1}{\sqrt{2}}\right) \) equal \( \frac{\pi}{4} \): \[ B = \left(\frac{\pi}{4}\right)^2 + \left(\frac{\pi}{4}\right)^2 = 2 \cdot \left(\frac{\pi}{4}\right)^2 = 2 \cdot \frac{\pi^2}{16} = \frac{\pi^2}{8} \] 8. **Check endpoints**: - For \( t = 0 \): \[ B = (\cos^{-1}(0))^2 + (\sin^{-1}(0))^2 = \left(\frac{\pi}{2}\right)^2 + 0^2 = \frac{\pi^2}{4} \] - For \( t = \frac{1}{\sqrt{2}} \): \[ B = \left(\frac{\pi}{4}\right)^2 + \left(\frac{\pi}{4}\right)^2 = \frac{\pi^2}{8} \] 9. **Conclusion**: The maximum value of \( B \) occurs at \( t = 0 \): \[ \text{Maximum value of } B = \frac{\pi^2}{4} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE MAIN ( ARCHIVE)|12 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

It is given that A=(tan^(-1)x)^(3)+(cot^(-1)x)^(3) where x gt 0 and B=(cos^(-1)t)^(2)+(sin^(-1)t)^(2) where t in [0, (1)/(sqrt(2))] , and sin^(-1)x+cos^(-1)x=(pi)/(2) for -1 le x le 1 and tan^(-1)x +cot^(-1)x=(pi)/(2) for x in R . The interval in which A lies is :

Solve for x : cot^(-1)x+tan^(-1)3=(pi)/2

Prove that sin (cot^(-1) (tan (cos^(-1) x))) = x, x gt 0

If a le sin^(-1)x +cos^(-1)x+tan^(-1)x le b , then:

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

If cot^(-1)x+tan^(-1)(1/2)=pi/4 then x is

Solve cos^(-1) (cos x) gt sin^(-1) (sin x), x in [0, 2pi]

Solve the following equation for x : "cos"(tan^(-1)x)=sin(cot^(-1)(3/4)) , tan(cos^(-1)x)=sin(cot^(-1)(1/2))

If |x| le 1 , then 2tan^(-1)x + sin^(-1)((2x)/(1+x^(2))) is equal to

Let f(x) = {(sin (tan^(-1) x) + sin (cot^(-1) x)}^2 - 1 , where |x| gt 1 and dy/dx = 1/2 d/dx (sin^(-1) f(x)) . If y(sqrt3) = pi/6 then y( -sqrt3)

VMC MODULES ENGLISH-INVERSE TRIGONOMETRY-LEVEL-2
  1. The equation (cosp-1)^x^2+(cos p)x+s in p=0 in the variable x has real...

    Text Solution

    |

  2. It is given that A=(tan^(-1)x)^(3)+(cot^(-1)x)^(3) where x gt 0 and B=...

    Text Solution

    |

  3. It is given that A=(tan^(-1)x)^(3)+(cot^(-1)x)^(3) where x gt 0 and B=...

    Text Solution

    |

  4. It is given that A=(tan^(-1)x)^(3)+(cot^(-1)x)^(3) where x gt 0 and B=...

    Text Solution

    |

  5. If sin^(-1)sqrt(x^2+2x + 1) + sec^(-1)sqrt(x^2 + 2x + 1) = pi/2; x!= 0...

    Text Solution

    |

  6. The value of a for which a x^2+sin^(-1)(x^2-2x+2)+cos^(-1)(x^2-2x+2)=1...

    Text Solution

    |

  7. Find the sum of infinite series s = sin^(-1) ( 1/sqrt2) + sin ^(-1) ...

    Text Solution

    |

  8. The number of solutions for the equation sin^(-1) sqrt((x^(2)-x+1))+c...

    Text Solution

    |

  9. Solution set of the inequality ( cot^(-1) x)^(2) - ( 5 cot^(-1) x) +...

    Text Solution

    |

  10. Solve tan^(-1)x+sin^(-1)x=tan^(-1)2xdot

    Text Solution

    |

  11. If sin^(-1)(x^2-4x+5)+cos^(-1)(y^2-2y+2)=pi/2 then find the value of x...

    Text Solution

    |

  12. If x and y are positive integers such that tan^(-1)x+cot^(-1)y=tan^(-...

    Text Solution

    |

  13. If cos^(-1)((7)/(|x|))+cos^(-1)((4sqrt(15))/(|x|))=(pi)/(2), then:

    Text Solution

    |

  14. For the equation 2x=tan(2tan^(-1)a)+2 t a n(tan^(-1)a+tan^(-1)a^3) , w...

    Text Solution

    |

  15. 2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r ex in R-{-1,1}, is equal to...

    Text Solution

    |

  16. cos^(-1)x=tan^(-1)x then

    Text Solution

    |

  17. Which of the following is/are correct?

    Text Solution

    |

  18. Let x1,x2,x3,x4 be four non zero numbers satisfying the equation tan^...

    Text Solution

    |

  19. The least value of n for which (n -2) x^(2) + 8 x + n + 4 gt sin^...

    Text Solution

    |

  20. For x,y,z,t in R, if sin^(-1)x+cos^(-1)y+sec^(-1)z ge t^(2)-sqrt(2pi)*...

    Text Solution

    |