Home
Class 12
MATHS
For the equation 2x=tan(2tan^(-1)a)+2 t ...

For the equation `2x=tan(2tan^(-1)a)+2 t a n(tan^(-1)a+tan^(-1)a^3)` , which of the following is/are invalid? a.`"a"^2"x"+2"a"="x"` b. `"a"^2+2"a x"+1=0` c.`"a"!=0` d. `a!=-1,\ 1`

A

`a^(2)x+2a=x`

B

`a^(2)+2ax+1=0`

C

`a ne 0`

D

`a ne 1, -1 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2x = \tan(2 \tan^{-1} a) + 2 \tan(\tan^{-1} a + \tan^{-1} a^3) \) and determine which of the given options are invalid, we can follow these steps: ### Step 1: Rewrite the equation The given equation is: \[ 2x = \tan(2 \tan^{-1} a) + 2 \tan(\tan^{-1} a + \tan^{-1} a^3) \] ### Step 2: Use the double angle formula for tangent We know that: \[ \tan(2A) = \frac{2\tan A}{1 - \tan^2 A} \] Let \( A = \tan^{-1} a \). Then: \[ \tan(2 \tan^{-1} a) = \frac{2a}{1 - a^2} \] ### Step 3: Use the addition formula for tangent For \( \tan(A + B) \): \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] Let \( B = \tan^{-1} a^3 \). Then: \[ \tan(\tan^{-1} a + \tan^{-1} a^3) = \frac{a + a^3}{1 - a \cdot a^3} = \frac{a + a^3}{1 - a^4} \] ### Step 4: Substitute back into the equation Now substituting back, we have: \[ 2x = \frac{2a}{1 - a^2} + 2 \cdot \frac{a + a^3}{1 - a^4} \] ### Step 5: Simplify the equation Combining the terms: \[ 2x = \frac{2a}{1 - a^2} + \frac{2(a + a^3)}{1 - a^4} \] ### Step 6: Find a common denominator The common denominator for the two fractions is \((1 - a^2)(1 - a^4)\). Thus, we rewrite: \[ 2x = \frac{2a(1 - a^4) + 2(a + a^3)(1 - a^2)}{(1 - a^2)(1 - a^4)} \] ### Step 7: Expand and simplify the numerator Expanding the numerator: \[ 2a(1 - a^4) + 2(a + a^3)(1 - a^2) = 2a - 2a^5 + 2a + 2a^3 - 2a^3 - 2a^5 = 4a - 4a^5 \] Thus, we have: \[ 2x = \frac{4a(1 - a^4)}{(1 - a^2)(1 - a^4)} \] ### Step 8: Simplify further Dividing both sides by 2 gives: \[ x = \frac{2a(1 - a^4)}{(1 - a^2)(1 - a^4)} \] ### Step 9: Cross-multiply Cross-multiplying gives: \[ x(1 - a^2)(1 - a^4) = 2a \] ### Step 10: Rearranging the equation Rearranging leads to: \[ x - x a^2 - x a^4 = 2a \] This can be rearranged to: \[ x a^2 + 2a - x = 0 \] ### Step 11: Analyze the options Now we analyze the options provided: 1. \( a^2 x + 2a = x \) - This is valid. 2. \( a^2 + 2ax + 1 = 0 \) - This is invalid. 3. \( a \neq 0 \) - This is invalid since \( a = 0 \) is a solution. 4. \( a \neq -1, 1 \) - This is valid since \( a = 1 \) and \( a = -1 \) lead to undefined expressions in the original equation. ### Conclusion Thus, the invalid options are: - Option 2: \( a^2 + 2ax + 1 = 0 \) - Option 3: \( a \neq 0 \)
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|15 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE MAIN ( ARCHIVE)|12 Videos
  • INVERSE TRIGONOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|10 Videos
  • INTEGRAL CALCULUS-1

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|25 Videos
  • JEE MAIN - 5

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .

2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)

Solve the equation tan^(-1)((1-x)/(1+x))=1/2tan^(-1)x ,(x >0)

Solve the equations. tan^(-1)((1-x)/(1+x))=1/2tan^(-1)x ,(x >0)

Solve the equations. tan^(-1)((1-x)/(1+x))=1/2tan^(-1)x ,(x >0)

Solve the equations. tan^(-1)(1-x)/(1+x)=1/2tan^(-1)x ,(x >0)

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

Solve: tan^(- 1) (2+x) + tan^(- 1) (2 -x ) = tan^(-1) 2/3

VMC MODULES ENGLISH-INVERSE TRIGONOMETRY-LEVEL-2
  1. If x and y are positive integers such that tan^(-1)x+cot^(-1)y=tan^(-...

    Text Solution

    |

  2. If cos^(-1)((7)/(|x|))+cos^(-1)((4sqrt(15))/(|x|))=(pi)/(2), then:

    Text Solution

    |

  3. For the equation 2x=tan(2tan^(-1)a)+2 t a n(tan^(-1)a+tan^(-1)a^3) , w...

    Text Solution

    |

  4. 2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r ex in R-{-1,1}, is equal to...

    Text Solution

    |

  5. cos^(-1)x=tan^(-1)x then

    Text Solution

    |

  6. Which of the following is/are correct?

    Text Solution

    |

  7. Let x1,x2,x3,x4 be four non zero numbers satisfying the equation tan^...

    Text Solution

    |

  8. The least value of n for which (n -2) x^(2) + 8 x + n + 4 gt sin^...

    Text Solution

    |

  9. For x,y,z,t in R, if sin^(-1)x+cos^(-1)y+sec^(-1)z ge t^(2)-sqrt(2pi)*...

    Text Solution

    |

  10. Let f(x)=(1)/(pi) (sin^(-1)x+cos^(-1)x+tan^(-1)x)+((x+1))/(x^(2)+2x+10...

    Text Solution

    |

  11. The number of rational numbers in the domain of function y=sin^(-1)...

    Text Solution

    |

  12. If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/(2), then A=x^(2)+y^(2)+z^(2)....

    Text Solution

    |

  13. Match the Column I with Column II and mark the correct option from the...

    Text Solution

    |

  14. Let t(1)= (sin^(-1)x)^(sin^(-1)x),t(2)= (sin^(-1) x)^(cos^(-1)x),t(3) ...

    Text Solution

    |

  15. If cos^(-1)(4x^3-3x)=a+bcos^(-1)x" for "-1 lt x lt -1/2, then [a + b+ ...

    Text Solution

    |

  16. The minimum integral value of alpha for which the quadratic equation (...

    Text Solution

    |

  17. Prove that: tan^(-1)(1/2tan2A)+tan^(-1)(cota)+tan^(-1)(cot^3A)={0 when...

    Text Solution

    |

  18. The sum to infinite terms of the series cot^(- 1)(2^2+1/2)+cot^(- 1)(2...

    Text Solution

    |

  19. Sum of infinite terms of the series cos^(-1) ( 1^(2) + 3/4) + cot^(-...

    Text Solution

    |

  20. Find the sum of infinite series s = sin^(-1) ( 1/sqrt2) + sin ^(-1) ...

    Text Solution

    |